ﻻ يوجد ملخص باللغة العربية
We present a single domain Galerkin-Collocation method to calculate puncture initial data sets for single and binary, either in the trumpet or wormhole geometries. The combination of aspects belonging to the Galerkin and the Collocation methods together with the adoption of spherical coordinates in all cases show to be very effective. We have proposed a unified expression for the conformal factor to describe trumpet and spinning black holes. In particular, for the spinning trumpet black holes, we have exhibited the deformation of the limit surface due to the spin from a sphere to an oblate spheroid. We have also revisited the energy content in the trumpet and wormhole puncture data sets. The algorithm can be extended to describe binary black holes.
We present a new computational framework for the Galerkin-collocation method for double domain in the context of ADM 3+1 approach in numerical relativity. This work enables us to perform high resolution calculations for initial sets of two arbitrary
We present improvements to construction of binary black hole initial data used in SpEC (the Spectral Einstein Code). We introduce new boundary conditions for the extended conformal thin sandwich elliptic equations that enforce the excision surfaces t
We present an implementation of the Galerkin-Collocation method to determine the initial data for non-rotating distorted three dimensional black holes in the inversion and puncture schemes. The numerical method combines the key features of the Galerk
We present a Galerkin-Collocation domain decomposition algorithm applied to the evolution of cylindrical unpolarized gravitational waves. We show the effectiveness of the algorithm in reproducing initial data with high localized gradients and in prov
We propose and explore a stationary 1+log slicing condition for the construction of solutions to Einsteins constraint equations. For stationary spacetimes, these initial data will give a stationary foliation when evolved with moving puncture gauge co