ﻻ يوجد ملخص باللغة العربية
In this work, we mainly study the mechanism of learning the steganographic algorithm as well as combining the learning process with adversarial learning to learn a good steganographic algorithm. To handle the problem of embedding secret messages into the specific medium, we design a novel adversarial modules to learn the steganographic algorithm, and simultaneously train three modules called generator, discriminator and steganalyzer. Different from existing methods, the three modules are formalized as a game to communicate with each other. In the game, the generator and discriminator attempt to communicate with each other using secret messages hidden in an image. While the steganalyzer attempts to analyze whether there is a transmission of confidential information. We show that through unsupervised adversarial training, the adversarial model can produce robust steganographic solutions, which act like an encryption. Furthermore, we propose to utilize supervised adversarial training method to train a robust steganalyzer, which is utilized to discriminate whether an image contains secret information. Numerous experiments are conducted on publicly available dataset to demonstrate the effectiveness of the proposed method.
Motivated by concerns for user privacy, we design a steganographic system (stegosystem) that enables two users to exchange encrypted messages without an adversary detecting that such an exchange is taking place. We propose a new linguistic stegosyste
The vulnerabilities of deep neural networks against adversarial examples have become a significant concern for deploying these models in sensitive domains. Devising a definitive defense against such attacks is proven to be challenging, and the method
In this paper, we demonstrate a physical adversarial patch attack against object detectors, notably the YOLOv3 detector. Unlike previous work on physical object detection attacks, which required the patch to overlap with the objects being misclassifi
Adversarial attacks have always been a serious threat for any data-driven model. In this paper, we explore subspaces of adversarial examples in unitary vector domain, and we propose a novel detector for defending our models trained for environmental
Understanding the spatial arrangement and nature of real-world objects is of paramount importance to many complex engineering tasks, including autonomous navigation. Deep learning has revolutionized state-of-the-art performance for tasks in 3D enviro