ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Adversarial Attacks and Characterization of Adversarial Subspace

74   0   0.0 ( 0 )
 نشر من قبل Alessandro Lameiras Koerich
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarial attacks have always been a serious threat for any data-driven model. In this paper, we explore subspaces of adversarial examples in unitary vector domain, and we propose a novel detector for defending our models trained for environmental sound classification. We measure chordal distance between legitimate and malicious representation of sounds in unitary space of generalized Schur decomposition and show that their manifolds lie far from each other. Our front-end detector is a regularized logistic regression which discriminates eigenvalues of legitimate and adversarial spectrograms. The experimental results on three benchmarking datasets of environmental sounds represented by spectrograms reveal high detection rate of the proposed detector for eight types of adversarial attacks and outperforms other detection approaches.

قيم البحث

اقرأ أيضاً

Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elemen ts found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied $k$-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result show Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for $k<5$ -- extending previous analysis of the $k$-secretary problem. We also introduce the textit{stochastic $k$-secretary} -- effectively reducing online blackbox transfer attacks to a $k$-secretary problem under noise -- and prove theoretical bounds on the performance of textit{any} online algorithms adapted to this setting. Finally, we complement our theoretical results by conducting experiments on both MNIST and CIFAR-10 with both vanilla and robust classifiers, revealing not only the necessity of online algorithms in achieving near-optimal performance but also the rich interplay of a given attack strategy towards online attack selection, enabling simple strategies like FGSM to outperform classically strong whitebox adversaries.
Adversarial audio attacks can be considered as a small perturbation unperceptive to human ears that is intentionally added to the audio signal and causes a machine learning model to make mistakes. This poses a security concern about the safety of mac hine learning models since the adversarial attacks can fool such models toward the wrong predictions. In this paper we first review some strong adversarial attacks that may affect both audio signals and their 2D representations and evaluate the resiliency of the most common machine learning model, namely deep learning models and support vector machines (SVM) trained on 2D audio representations such as short time Fourier transform (STFT), discrete wavelet transform (DWT) and cross recurrent plot (CRP) against several state-of-the-art adversarial attacks. Next, we propose a novel approach based on pre-processed DWT representation of audio signals and SVM to secure audio systems against adversarial attacks. The proposed architecture has several preprocessing modules for generating and enhancing spectrograms including dimension reduction and smoothing. We extract features from small patches of the spectrograms using speeded up robust feature (SURF) algorithm which are further used to generate a codebook using the K-Means++ algorithm. Finally, codewords are used to train a SVM on the codebook of the SURF-generated vectors. All these steps yield to a novel approach for audio classification that provides a good trade-off between accuracy and resilience. Experimental results on three environmental sound datasets show the competitive performance of proposed approach compared to the deep neural networks both in terms of accuracy and robustness against strong adversarial attacks.
This paper introduces stochastic sparse adversarial attacks (SSAA), simple, fast and purely noise-based targeted and untargeted $L_0$ attacks of neural network classifiers (NNC). SSAA are devised by exploiting a simple small-time expansion idea widel y used for Markov processes and offer new examples of $L_0$ attacks whose studies have been limited. They are designed to solve the known scalability issue of the family of Jacobian-based saliency maps attacks to large datasets and they succeed in solving it. Experiments on small and large datasets (CIFAR-10 and ImageNet) illustrate further advantages of SSAA in comparison with the-state-of-the-art methods. For instance, in the untargeted case, our method called Voting Folded Gaussian Attack (VFGA) scales efficiently to ImageNet and achieves a significantly lower $L_0$ score than SparseFool (up to $frac{2}{5}$ lower) while being faster. Moreover, VFGA achieves better $L_0$ scores on ImageNet than Sparse-RS when both attacks are fully successful on a large number of samples. Codes are publicly available through the link https://github.com/SSAA3/stochastic-sparse-adv-attacks
111 - Jing Wu , Mingyi Zhou , Ce Zhu 2021
Recently, adversarial attack methods have been developed to challenge the robustness of machine learning models. However, mainstream evaluation criteria experience limitations, even yielding discrepancies among results under different settings. By ex amining various attack algorithms, including gradient-based and query-based attacks, we notice the lack of a consensus on a uniform standard for unbiased performance evaluation. Accordingly, we propose a Piece-wise Sampling Curving (PSC) toolkit to effectively address the aforementioned discrepancy, by generating a comprehensive comparison among adversaries in a given range. In addition, the PSC toolkit offers options for balancing the computational cost and evaluation effectiveness. Experimental results demonstrate our PSC toolkit presents comprehensive comparisons of attack algorithms, significantly reducing discrepancies in practice.
186 - Qi-An Fu , Yinpeng Dong , Hang Su 2021
Deep learning models are vulnerable to adversarial examples, which can fool a target classifier by imposing imperceptible perturbations onto natural examples. In this work, we consider the practical and challenging decision-based black-box adversaria l setting, where the attacker can only acquire the final classification labels by querying the target model without access to the models details. Under this setting, existing works often rely on heuristics and exhibit unsatisfactory performance. To better understand the rationality of these heuristics and the limitations of existing methods, we propose to automatically discover decision-based adversarial attack algorithms. In our approach, we construct a search space using basic mathematical operations as building blocks and develop a random search algorithm to efficiently explore this space by incorporating several pruning techniques and intuitive priors inspired by program synthesis works. Although we use a small and fast model to efficiently evaluate attack algorithms during the search, extensive experiments demonstrate that the discovered algorithms are simple yet query-efficient when transferred to larger normal and defensive models on the CIFAR-10 and ImageNet datasets. They achieve comparable or better performance than the state-of-the-art decision-based attack methods consistently.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا