ﻻ يوجد ملخص باللغة العربية
Let $p$ be a prime. Let $ninmathbb N-{0}$. Let $mathcal C$ be an $F^n$-crystal over a locally noetherian $mathbb F_p$-scheme $S$. Let $(a,b)inmathbb N^2$. We show that the reduced locally closed subscheme of $S$ whose points are exactly those $xin S$ such that $(a,b)$ is a break point of the Newton polygon of the fiber $mathcal C_x$ of $mathcal C$ at $x$ is pure in $S$, i.e., it is an affine $S$-scheme. This result refines and reobtains previous results of de Jong--Oort, Vasiu, and Yang. As an application, we show that for all $min mathbb N$ the reduced locally closed subscheme of $S$ whose points are exactly those $xin S$ for which the $p$-rank of $mathcal C_x$ is $m$ is pure in $S$; the case $n=1$ was previously obtained by Deligne (unpublished) and the general case $nge 1$ refines and reobtains a result of Zink.
A $k$-differential on a Riemann surface is a section of the $k$-th power of the canonical line bundle. Loci of $k$-differentials with prescribed number and multiplicities of zeros and poles form a natural stratification of the moduli space of $k$-dif
We describe the closure of the strata of abelian differentials with prescribed type of zeros and poles, in the projectivized Hodge bundle over the Deligne-Mumford moduli space of stable curves with marked points. We provide an explicit characterizati
For a linear subvariety $M$ of a stratum of meromorphic differentials, we investigate its closure in the multi-scale compactification constructed by Bainbridge-Chen-Gendron-Grushevsky-Moller. We prove various restrictions on the type of defining line
Let $k$ be a field of characteristic $p>0$. Let $D_m$ be a $BT_m$ over $k$ (i.e., an $m$-truncated Barsotti--Tate group over $k$). Let $S$ be abreak $k$-scheme and let $X$ be a $BT_m$ over $S$. Let $S_{D_m}(X)$ be the subscheme of $S$ which describes
Let $X$ be a complex, irreducible, quasi-projective variety, and $pi:widetilde Xto X$ a resolution of singularities of $X$. Assume that the singular locus ${text{Sing}}(X)$ of $X$ is smooth, that the induced map $pi^{-1}({text{Sing}}(X))to {text{Sing