ﻻ يوجد ملخص باللغة العربية
For a linear subvariety $M$ of a stratum of meromorphic differentials, we investigate its closure in the multi-scale compactification constructed by Bainbridge-Chen-Gendron-Grushevsky-Moller. We prove various restrictions on the type of defining linear equations in period coordinates for $M$ near its boundary, and prove that the closure is locally a toric variety. As applications, we give a fundamentally new proof of a generalization of the cylinder deformation theorem of Wright to the case of meromorphic strata, and construct a smooth compactification of the Hurwitz space of covers of the Riemann sphere.
A $k$-differential on a Riemann surface is a section of the $k$-th power of the canonical line bundle. Loci of $k$-differentials with prescribed number and multiplicities of zeros and poles form a natural stratification of the moduli space of $k$-dif
We describe the closure of the strata of abelian differentials with prescribed type of zeros and poles, in the projectivized Hodge bundle over the Deligne-Mumford moduli space of stable curves with marked points. We provide an explicit characterizati
An increasingly important area of interest for mathematicians is the study of Abelian differentials. This growing interest can be attributed to the interdisciplinary role this subject plays in modern mathematics, as various problems of algebraic geom
We construct a compactification of the moduli spaces of abelian differentials on Riemann surfaces with prescribed zeroes and poles. This compactification, called the moduli space of multi-scale differentials, is a complex orbifold with normal crossin
We present an explicit formula relating volumes of strata of meromorphicquadratic differentials with at most simple poles on Riemann surfacesand counting functions of the number of flat cylinders filled by closedgeodesics in associated flat metric wi