ﻻ يوجد ملخص باللغة العربية
Consider a binary linear code of length $N$, minimum distance $d_{text{min}}$, transmission over the binary erasure channel with parameter $0 < epsilon < 1$ or the binary symmetric channel with parameter $0 < epsilon < frac12$, and block-MAP decoding. It was shown by Tillich and Zemor that in this case the error probability of the block-MAP decoder transitions quickly from $delta$ to $1-delta$ for any $delta>0$ if the minimum distance is large. In particular the width of the transition is of order $O(1/sqrt{d_{text{min}}})$. We strengthen this result by showing that under suitable conditions on the weight distribution of the code, the transition width can be as small as $Theta(1/N^{frac12-kappa})$, for any $kappa>0$, even if the minimum distance of the code is not linear. This condition applies e.g., to Reed-Mueller codes. Since $Theta(1/N^{frac12})$ is the smallest transition possible for any code, we speak of almost optimal scaling. We emphasize that the width of the transition says nothing about the location of the transition. Therefore this result has no bearing on whether a code is capacity-achieving or not. As a second contribution, we present a new estimate on the derivative of the EXIT function, the proof of which is based on the Blowing-Up Lemma.
We introduce a new approach to proving that a sequence of deterministic linear codes achieves capacity on an erasure channel under maximum a posteriori decoding. Rather than relying on the precise structure of the codes our method exploits code symme
The well known Plotkin construction is, in the current paper, generalized and used to yield new families of Z2Z4-additive codes, whose length, dimension as well as minimum distance are studied. These new constructions enable us to obtain families of
The famous Barnes-Wall lattices can be obtained by applying Construction D to a chain of Reed-Muller codes. By applying Construction ${{D}}^{{(cyc)}}$ to a chain of extended cyclic codes sandwiched between Reed-Muller codes, Hu and Nebe (J. London Ma
New quaternary Plotkin constructions are given and are used to obtain new families of quaternary codes. The parameters of the obtained codes, such as the length, the dimension and the minimum distance are studied. Using these constructions new famili
The question whether RM codes are capacity-achieving is a long-standing open problem in coding theory that was recently answered in the affirmative for transmission over erasure channels [1], [2]. Remarkably, the proof does not rely on specific prope