ﻻ يوجد ملخص باللغة العربية
We perform ab initio molecular dynamics (AIMD) simulation of liquid water in the canonical ensemble at ambient conditions using the SCAN meta-GGA functional approximation, and carry out systematic comparisons with the results obtained from the GGA-level PBE functional, and Tkatchenko-Scheffler van der Waals (vdW) dispersion correction inclusive PBE functional. We analyze various properties of liquid water including radial distribution functions, oxygen-oxygen-oxygen triplet angular distribution, tetrahedrality, hydrogen bonds, diffusion coefficients, ring statistics, density of states, band gaps, and dipole moments. We find that the SCAN functional is generally more accurate than the other two functionals for liquid water by not only capturing the intermediate-range vdW interactions but also mitigating the overly strong hydrogen bonds prescribed in PBE simulations. We also compare the results of SCAN-based AIMD simulations in the canonical and isothermal-isobaric ensembles. Our results suggest that SCAN provides a reliable description for most structural, electronic, and dynamical properties in liquid water.
Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (S
We have employed molecular dynamics simulations based on the TIP4P/2005 water model to investigate the local structural, dynamical, and dielectric properties of the two recently reported body-centered-cubic and face-centered-cubic plastic crystal pha
Feynman path-integral deep potential molecular dynamics (PI-DPMD) calculations have been employed to study both light (H$_2$O) and heavy water (D$_2$O) within the isothermal-isobaric ensemble. In particular, the deep neural network is trained based o
Ab initio molecular dynamics simulation is used to study the structure and electronic properties of the liquid Ga-Se system at the three compositions Ga$_2$Se, GaSe and Ga$_2$Se$_3$, and of the GaSe and Ga$_2$Se$_3$ crystals. The calculated equilibri
Classical density-functional theory provides an efficient alternative to molecular dynamics simulations for understanding the equilibrium properties of inhomogeneous fluids. However, application of density-functional theory to multi-site molecular fl