ﻻ يوجد ملخص باللغة العربية
Classical density-functional theory provides an efficient alternative to molecular dynamics simulations for understanding the equilibrium properties of inhomogeneous fluids. However, application of density-functional theory to multi-site molecular fluids has so far been limited by complications due to the implicit molecular geometry constraints on the site densities, whose resolution typically requires expensive Monte Carlo methods. Here, we present a general scheme of circumventing this so-called inversion problem: compressed representations of the orientation density. This approach allows us to combine the superior iterative convergence properties of multipole representations of the fluid configuration with the improved accuracy of site-density functionals. Next, from a computational perspective, we show how to extend the DFT++ algebraic formulation of electronic density-functional theory to the classical fluid case and present a basis-independent discretization of our formulation for molecular classical density-functional theory. Finally, armed with the above general framework, we construct a simplified free-energy functional for water which captures the radial distributions, cavitation energies, and the linear and non-linear dielectric response of liquid water. The resulting approach will enable efficient and reliable first-principles studies of atomic-scale processes in contact with solution or other liquid environments.
We have derived and implemented a stress tensor formulation for the van derWaals density functional (vdW-DF) with spin-polarization-dependent gradient correction (GC) recently proposed by the authors [J. Phys. Soc. Jpn. 82, 093701 (2013)] and applied
Orbital-free density functional theory (OF-DFT) is a promising method for large-scale quantum mechanics simulation as it provides a good balance of accuracy and computational cost. Its applicability to large-scale simulations has been aided by progre
We derive the second-order approximation (PT2) to the ensemble correlation energy functional by applying the G{o}rling-Levy perturbation theory on the ensemble density-functional theory (EDFT). Its performance is checked by calculating excitation ene
Reliable and robust convergence to the electronic ground state within density functional theory (DFT) Kohn-Sham (KS) calculations remains a thorny issue in many systems of interest. In such cases, charge sloshing can delay or completely hinder the co
We present an accurate equation of state for water based on a simple microscopic Hamiltonian, with only four parameters that are well-constrained by bulk experimental data. With one additional parameter for the range of interaction, this model yields