ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential cross section and photon-beam asymmetry for the gamma p -> pi- Delta++(1232) reaction at forward pi- angles for Egamma=1.5-2.95 GeV

83   0   0.0 ( 0 )
 نشر من قبل Hideki Kohri
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Differential cross sections and photon-beam asymmetries for the gamma p -> pi- Delta++(1232) reaction have been measured for 0.7<cos(theta)<1 and Egamma=1.5-2.95 GeV at SPring-8/LEPS. The first-ever high statistics cross section data are obtained in this kinematical region, and the asymmetry data for 1.5<Egamma(GeV)<2.8 are obtained for the first time. This reaction has a unique feature for studying the production mechanisms of a pure $ubar{u}$ quark pair in the final state from the proton. Although there is no distinct peak structure in the cross sections, a non-negligible excess over the theoretical predictions is observed at Egamma=1.5-1.8 GeV. The asymmetries are found to be negative in most of the present kinematical regions, suggesting the dominance of pi-exchange in the t-channel. The negative asymmetries at forward meson production angles are different from the asymmetries previously measured for the photoproduction reactions which produce a $dbar{d}$ or an $sbar{s}$ quark pair in the final state. Advanced theoretical models introducing nucleon resonances and additional unnatural parity exchanges are needed to reproduce the present data.



قيم البحث

اقرأ أيضاً

156 - H. Kohri , S.Y. Wang , S.H. Shiu 2017
Differential cross sections and photon beam asymmetries for the gamma p -> pi+ n reaction have been measured for 0.6<cos(theta)<1 and Egamma=1.5-2.95 GeV at SPring-8/LEPS. The cross sections monotonically decrease as the photon beam energy increases for 0.6<cos(theta)<0.9. However, the energy dependence of the cross sections for 0.9<cos(theta)<1 and Egamma=1.5-2.2 GeV (W=1.9-2.2 GeV) is different, which may be due to a nucleon or Delta resonance. The present cross sections agree well with the previous cross sections measured by other groups and show forward peaking, suggesting significant t-channel contributions in this kinematical region. The asymmetries are found to be positive, which can be explained by rho-exchange in the t-channel. Large positive asymmetries in the small |t| region, where the rho-exchange contribution becomes small, could be explained by introducing pi-exchange interference with the s-channel.
324 - H. Kohri , D. S. Ahn , J. K. Ahn 2006
Differential cross sections and photon beam asymmetries have been measured for the gamma n -> K+ Sigma- and gamma p -> K+ Sigma0 reactions separately using liquid deuterium and hydrogen targets with incident linearly polarized photon beams of Egamma= 1.5-2.4 GeV at 0.6<cosTheta<1. The cross section ratio of sigma(K+Sigma-)/sigma(K+Sigma0), expected to be 2 on the basis of the isospin 1/2 exchange, is found to be close to 1. For the K+Sigma- reaction, large positive asymmetries are observed indicating the dominance of the K*-exchange. A large difference between the asymmetries for the K+Sigma- and K+Sigma0 reactions can not be explained by simple theoretical considerations.
177 - W. Chen , T. Mibe , D. Dutta 2009
We report a measurement of the differential cross section for the $gamma n to pi^- p$ process from the CLAS detector at Jefferson Lab in Hall B for photon energies between 1.0 and 3.5 GeV and pion center-of-mass (c.m.) angles ($theta_{c.m.}$) between 50$^circ$ and 115$^circ$. We confirm a previous indication of a broad enhancement around a c.m. energy ($sqrt{s}$) of 2.2 GeV at $theta_{c.m.}=90^circ$ in the scaled differential cross section, $s^7 {frac{dsigma}{dt}}$. Our data show the angular dependence of this enhancement as the scaling region is approached in the kinematic region from 70$^circ$ to 105$^circ$.
Beam polarization asymmetries for the p(gamma,K+)Lambda and p(gamma,K+)sigma0 reactions are measured for the first time for Egamma=1.5-2.4 GeV and 0.6<cos(theta_cm(K+))<1.0 by using linearly polarized photons at the Laser-Electron-Photon facility at SPring-8 (LEPS). The observed asymmetries are positive and gradually increase with rising photon energy. The data are not consistent with theoretical predictions based on tree-level effective Lagrangian approaches. Including the new results in the development of the models is, therefore, crucial for understanding the reaction mechanism and to test the presence of baryon resonances which are predicted in quark models but are sofar undiscovered.
The reaction $gamma p to pi^circ gamma^prime p$ has been measured with the TAPS calorimeter at the Mainz Microtron accelerator facility MAMI for energies between $sqrt{s}$ = 1221--1331 MeV. Cross sections differential in angle and energy have been de termined for all particles in the final state in three bins of the excitation energy. This reaction channel provides access to the magnetic dipole moment of the $Delta^{+}(1232)$ resonance and, for the first time, a value of $mu_{Delta^+} = (2.7_{-1.3}^{+1.0}(stat.) pm 1.5 (syst.) pm 3(theo.)) mu_N$ has been extracted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا