ﻻ يوجد ملخص باللغة العربية
Differential cross sections and photon beam asymmetries for the gamma p -> pi+ n reaction have been measured for 0.6<cos(theta)<1 and Egamma=1.5-2.95 GeV at SPring-8/LEPS. The cross sections monotonically decrease as the photon beam energy increases for 0.6<cos(theta)<0.9. However, the energy dependence of the cross sections for 0.9<cos(theta)<1 and Egamma=1.5-2.2 GeV (W=1.9-2.2 GeV) is different, which may be due to a nucleon or Delta resonance. The present cross sections agree well with the previous cross sections measured by other groups and show forward peaking, suggesting significant t-channel contributions in this kinematical region. The asymmetries are found to be positive, which can be explained by rho-exchange in the t-channel. Large positive asymmetries in the small |t| region, where the rho-exchange contribution becomes small, could be explained by introducing pi-exchange interference with the s-channel.
Differential cross sections and photon-beam asymmetries for the gamma p -> pi- Delta++(1232) reaction have been measured for 0.7<cos(theta)<1 and Egamma=1.5-2.95 GeV at SPring-8/LEPS. The first-ever high statistics cross section data are obtained in
Differential cross sections and photon beam asymmetries have been measured for the gamma n -> K+ Sigma- and gamma p -> K+ Sigma0 reactions separately using liquid deuterium and hydrogen targets with incident linearly polarized photon beams of Egamma=
We report a measurement of the differential cross section for the $gamma n to pi^- p$ process from the CLAS detector at Jefferson Lab in Hall B for photon energies between 1.0 and 3.5 GeV and pion center-of-mass (c.m.) angles ($theta_{c.m.}$) between
Beam polarization asymmetries for the p(gamma,K+)Lambda and p(gamma,K+)sigma0 reactions are measured for the first time for Egamma=1.5-2.4 GeV and 0.6<cos(theta_cm(K+))<1.0 by using linearly polarized photons at the Laser-Electron-Photon facility at
The $gamma n to pi^0 n$ differential cross section evaluated for 27 energy bins span the photon-energy range 290-813 MeV (W = 1.195-1.553 GeV) and the pion c.m. polar production angles, ranging from 18 deg to 162 deg, making use of model-dependent nu