ﻻ يوجد ملخص باللغة العربية
Recently developed control methods with strong disturbance rejection capabilities provide a useful option for control design. The key lies in a general concept of disturbance and effective ways to estimate and compensate the disturbance. This work extends the concept of disturbance as the mismatch between a system model and the true dynamics, and estimates and compensates the disturbance for multi-input multi-output linear/nonlinear systems described in a general form. The results presented do not need to assume the disturbance to be independent of the control inputs or satisfy a certain matching condition, and do not require the system to be expressible in an integral canonical form as required by algorithms previously described in literature. The estimator and controller are designed under a state tracking framework, and sufficient conditions for the closed-loop stability are presented. The performance of the resulting controller relies on a co-design of the system model, the state and disturbance observer, and the controller. Numerical experiments on a first-order system and an inverted pendulum under uncertainties are used to illustrate the control design method and demonstrate its efficacy.
Symbolic control is a an abstraction-based controller synthesis approach that provides, algorithmically, certifiable-by-construction controllers for cyber-physical systems. Current methodologies of symbolic control usually assume that full-state info
This paper deals with suboptimal distributed H2 control by dynamic output feedback for homogeneous linear multi-agent systems. Given a linear multi-agent system, together with an associated H2 cost functional, the objective is to design dynamic outpu
In this paper, for linear time-invariant plants, where a collection of possible inputs and outputs are known a priori, we address the problem of determining the communication between outputs and inputs, i.e., information patterns, such that desired c
We present designs for exponential stabilization of an ODE-heat PDE-ODE coupled system where the control actuation only acts in one ODE. The combination of PDE backstepping and ODE backstepping is employed in a state-feedback control law and in an ob
This paper addresses the problem of positive consensus of directed multi-agent systems with observer-type output-feedback protocols. More specifically, directed graph is used to model the communication topology of the multi-agent system and linear ma