ترغب بنشر مسار تعليمي؟ اضغط هنا

Output Feedback Control Based on State and Disturbance Estimation

109   0   0.0 ( 0 )
 نشر من قبل Wuhua Hu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently developed control methods with strong disturbance rejection capabilities provide a useful option for control design. The key lies in a general concept of disturbance and effective ways to estimate and compensate the disturbance. This work extends the concept of disturbance as the mismatch between a system model and the true dynamics, and estimates and compensates the disturbance for multi-input multi-output linear/nonlinear systems described in a general form. The results presented do not need to assume the disturbance to be independent of the control inputs or satisfy a certain matching condition, and do not require the system to be expressible in an integral canonical form as required by algorithms previously described in literature. The estimator and controller are designed under a state tracking framework, and sufficient conditions for the closed-loop stability are presented. The performance of the resulting controller relies on a co-design of the system model, the state and disturbance observer, and the controller. Numerical experiments on a first-order system and an inverted pendulum under uncertainties are used to illustrate the control design method and demonstrate its efficacy.

قيم البحث

اقرأ أيضاً

86 - Mahmoud Khaled , Kuize Zhang , 2020
Symbolic control is a an abstraction-based controller synthesis approach that provides, algorithmically, certifiable-by-construction controllers for cyber-physical systems. Current methodologies of symbolic control usually assume that full-state info rmation is available. This is not suitable for many real-world applications with partially-observable states or output information. This article introduces a framework for output-feedback symbolic control. We propose relations between original systems and their symbolic models based on outputs. They enable designing symbolic controllers and refining them to enforce complex requirements on original systems. To demonstrate the effectiveness of the proposed framework, we provide three different methodologies. They are applicable to a wide range of linear and nonlinear systems, and support general logic specifications.
This paper deals with suboptimal distributed H2 control by dynamic output feedback for homogeneous linear multi-agent systems. Given a linear multi-agent system, together with an associated H2 cost functional, the objective is to design dynamic outpu t feedback protocols that guarantee the associated cost to be smaller than an a priori given upper bound while synchronizing the controlled network. A design method is provided to compute such protocols. The computation of the two local gains in these protocols involves two Riccati inequalities, each of dimension equal to the dimension of the state space of the agents. The largest and smallest nonzero eigenvalue of the Laplacian matrix of the network graph are also used in the computation of one of the two local gains.A simulation example is provided to illustrate the performance of the proposed protocols.
In this paper, for linear time-invariant plants, where a collection of possible inputs and outputs are known a priori, we address the problem of determining the communication between outputs and inputs, i.e., information patterns, such that desired c ontrol objectives of the closed-loop system (for instance, stabilizability) through static output feedback may be ensured. We address this problem in the structural system theoretic context. To this end, given a specified structural pattern (locations of zeros/non-zeros) of the plant matrices, we introduce the concept of essential information patterns, i.e., communication patterns between outputs and inputs that satisfy the following conditions: (i) ensure arbitrary spectrum assignment of the closed-loop system, using static output feedback constrained to the information pattern, for almost all possible plant instances with the specified structural pattern; and (ii) any communication failure precludes the resulting information pattern from attaining the pole placement objective in (i). Subsequently, we study the problem of determining essential information patterns. First, we provide several necessary and sufficient conditions to verify whether a specified information pattern is essential or not. Further, we show that such conditions can be verified by resorting to algorithms with polynomial complexity (in the dimensions of the state, input and output). Although such verification can be performed efficiently, it is shown that the problem of determining essential information patterns is in general NP-hard. The main results of the paper are illustrated through examples.
40 - Ji Wang , Miroslav Krstic 2019
We present designs for exponential stabilization of an ODE-heat PDE-ODE coupled system where the control actuation only acts in one ODE. The combination of PDE backstepping and ODE backstepping is employed in a state-feedback control law and in an ob server that estimates PDE and two ODE states only using one PDE boundary measurement. Based on the state-feedback control law and the observer, the output-feedback control law is then proposed. The exponential stability of the closed-loop system and the boundedness and exponential convergence of the control law are proved via Lyapunov analysis. Finally, numerical simulations validate the effectiveness of this method for the `sandwiched system.
This paper addresses the problem of positive consensus of directed multi-agent systems with observer-type output-feedback protocols. More specifically, directed graph is used to model the communication topology of the multi-agent system and linear ma trix inequalities (LMIs) are used in the consensus analysis in this paper. Using positive systems theory and graph theory, a convex programming algorithm is developed to design appropriate protocols such that the multi-agent system is able to reach consensus with its state trajectory always remaining in the non-negative orthant. Finally, numerical simulations are given to illustrate the effectiveness of the derived theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا