ﻻ يوجد ملخص باللغة العربية
We study the dynamics of plasma along the legs of an arch filament system (AFS) from the chromosphere to the photosphere, observed with high-cadence spectroscopic data from two ground-based solar telescopes: the GREGOR telescope (Tenerife) using the GREGOR Infrarred Spectrograph (GRIS) in the He I 10830 r{A} range and the Swedish Solar Telescope (La Palma) using the CRisp Imaging Spectro-Polarimeter to observe the Ca II 8542 r{A} and Fe I 6173 r{A} spectral lines. The temporal evolution of the draining of the plasma was followed along the legs of a single arch filament from the chromosphere to the photosphere. The average Doppler velocities inferred at the upper chromosphere from the He I 10830 r{A} triplet reach velocities up to 20-24~km~s$^{-1}$, in the lower chromosphere and upper photosphere the Doppler velocities reach up to 11~km~s$^{-1}$ and 1.5~km~s$^{-1}$ in the case of the Ca II 8542 r{A} and Si I 10827 r{A} spectral lines, respectively. The evolution of the Doppler velocities at different layers of the solar atmosphere (chromosphere and upper photosphere) shows that they follow the same LOS velocity pattern, which confirm the observational evidence that the plasma drains towards the photosphere as proposed in models of AFSs. The Doppler velocity maps inferred from the lower photospheric Ca I 10839 r{A} or Fe I 6173 r{A} spectral lines do not show the same LOS velocity pattern. Thus, there is no evidence that the plasma reaches the lower photosphere. The observations and the nonlinear force-free field extrapolations demonstrate that the magnetic field loops of the AFS rise with time. We found flow asymmetries at different footpoints of the AFS. The NLFFF values of the magnetic field strength give us a clue to explain these flow asymmetries.
Magnetic fields on the surface of the Sun and stars in general imprint or modify the polarization state of the electromagnetic radiation that is leaving from the star. The inference of solar/stellar magnetic fields is performed by detecting, studying
We present high-resolution observations of a magnetic reconnection event in the solar atmosphere taken with the New Vacuum Solar Telescope, AIA and HMI. The reconnection event occurred between the threads of a twisted arch filament system (AFS) and c
An active region filament in the upper chromosphere is studied using spectropolarimetric data in He I 10830 A from the GREGOR telescope. A Milne-Eddingon based inversion of the Unno-Rachkovsky equations is used to retrieve the velocity and the magnet
We study five sequential solar flares (SOL2015-08-07) occurring in Active Region 12396 observed with the Goode Solar Telescope (GST) at the BBSO, complemented by IRIS and SDO observations. The main flaring region is an arch filament system (AFS) cons
Besides their own intrinsic interest, correct interpretation of solar surface magnetic field observations is crucial to our ability to describe the global magnetic structure of the solar atmosphere. Photospheric magnetograms are often used as lower b