ترغب بنشر مسار تعليمي؟ اضغط هنا

Element abundance ratios in the quiet Sun transition region

52   0   0.0 ( 0 )
 نشر من قبل Peter Young
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Peter R. Young




اسأل ChatGPT حول البحث

Element abundance ratios of magnesium to neon (Mg/Ne) and neon to oxygen (Ne/O) in the transition region of the quiet Sun have been derived by re-assessing previously published data from the Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory in the light of new atomic data. The quiet Sun Mg/Ne ratio is important for assessing the effect of magnetic activity on the mechanism of the first ionization potential (FIP) effect, while the Ne/O ratio can be used to infer the solar photospheric abundance of neon, which can not be measured directly. The average Mg/Ne ratio is found to be $0.52pm 0.11$, which applies over the temperature region 0.2--0.7~MK, and is consistent with the earlier study. The Ne/O ratio is, however, about 40% larger, taking the value $0.24pm 0.05$ that applies to the temperature range 0.08--0.40~MK. The increase is mostly due to changes in ionization and recombination rates that affect the equilibrium ionization balance. If the Ne/O ratio is interpreted as reflecting the photospheric ratio, then the photospheric neon abundance is $8.08pm 0.09$ or $8.15pm 0.10$ (on a logarithmic scale for which hydrogen is 12), according to whether the oxygen abundances of M.~Asplund et al. or E.~Caffau et al. are used. The updated photospheric neon abundance implies a Mg/Ne FIP bias for the quiet Sun of $1.6pm 0.6$.



قيم البحث

اقرأ أيضاً

Observations of the polar region of the Sun are critically important for understanding the solar dynamo and the acceleration of solar wind. We carried out precise magnetic observations on both the North polar region and the quiet Sun at the East limb with the Spectro-Polarimeter of the Solar Optical Telescope aboard Hinode to characterize the polar region with respect to the quiet Sun. The average area and the total magnetic flux of the kG magnetic concentrations in the polar region appear to be larger than those of the quiet Sun. The magnetic field vectors classified as vertical in the quiet Sun have symmetric histograms around zero in the strengths, showing balanced positive and negative flux, while the histogram in the North polar region is clearly asymmetric, showing a predominance of the negative polarity. The total magnetic flux of the polar region is larger than that of the quiet Sun. In contrast, the histogram of the horizontal magnetic fields is exactly the same between the polar region and the quiet Sun. This is consistent with the idea that a local dynamo process is responsible for the horizontal magnetic fields. A high-resolution potential field extrapolation shows that the majority of magnetic field lines from the kG-patches in the polar region are open with a fanning-out structure very low in the atmosphere, while in the quiet Sun, almost all the field lines are closed.
Rapid Blue- and Red-shifted Excursions (RBEs and RREs) are likely to be the on-disk counterparts of Type II spicules. Recently, heating signatures from RBEs/RREs have been detected in IRIS slit-jaw images dominated by transition-region lines around n etwork patches. Additionally, signatures of Type II spicules have been observed in AIA diagnostics. The full-disk, ever-present nature of the AIA diagnostics should provide us with sufficient statistics to directly determine how important RBEs and RREs are to the heating of the transition region and corona. We find, with high statistical significance, that at least 11% of the low-coronal brightenings detected in a quiet-Sun region in 304, can be attributed to either RBEs or RREs as observed in Halpha, and a 6% match of 171 detected events to RBEs or RREs with very similar statistics for both types of Halpha features. We took a statistical approach that allows for noisy detections in the coronal channels and provides us with a lower, but statistical significant, bound. Further, we consider matches based on overlapping features in both time and space, and find strong visual indications of further correspondence between coronal events and co-evolving but non-overlapping, RBEs and RREs.
131 - Jiv{r}i Wollmann 2020
We studied the dynamics of the solar atmosphere in the region of a large quiet-Sun filament, which erupted on 21 October 2010. The filament eruption started at its northern end and disappeared from the H$alpha$ line-core filtergrams line within a few hours. The very fast motions of the northern leg were recorded in ultraviolet light by AIA. We aim to study a wide range of available datasets describing the dynamics of the solar atmosphere for five days around the filament eruption. This interval covers three days of the filament evolution, one day before the filament growth and one day after the eruption. We search for possible triggers that lead to the eruption of the filament. The surface velocity field in the region of the filament were measured by means of time-distance helioseismology and coherent structure tracking. The apparent velocities in the higher atmosphere were estimated by tracking the features in the 30.4 nm AIA observations. To capture the evolution of the magnetic field, we extrapolated the photospheric line-of-sight magnetograms and also computed the decay index of the magnetic field. We found that photospheric velocity fields showed some peculiarities. Before the filament activation, we observed a temporal increase of the converging flows towards the filaments spine. In addition, the mean squared velocity increased temporarily before the activation and peaked just before it, followed by a steep decrease. We further see an increase in the average shear of the zonal flow component in the filaments region, followed by a steep decrease. The photospheric l.o.s. magnetic field shows a persistent increase of induction eastward from the filament spine. The decay index of the magnetic field at heights around 10 Mm shows a value larger than critical at the connecting point of the northern filament end.
We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from {sc Sunrise}/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops which reach into the chromosphere or higher have one foot point in relatively strong magnetic field regions in the photosphere. $91%$ of the magnetic energy in the mid chromosphere (at a height of 1 Mm) is in field lines, whose stronger foot point has a strength of more than 300 G, i.e. above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker foot point has a strength $B < 300$ G and is located in the internetwork. Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the internetwork fields.
Recent IRIS observations have revealed a prevalence of intermittent small-scale jets with apparent speeds of 80 - 250 km s$^{-1}$, emanating from small-scale bright regions inside network boundaries of coronal holes. We find that these network jets a ppear not only in coronal holes but also in quiet-sun regions. Using IRIS 1330A (C II) slit-jaw images, we extract several parameters of these network jets, e.g. apparent speed, length, lifetime and increase in foot-point brightness. Using several observations, we find that some properties of the jets are very similar but others are obviously different between the quiet sun and coronal holes. For example, our study shows that the coronal-hole jets appear to be faster and longer than those in the quiet sun. This can be directly attributed to a difference in the magnetic configuration of the two regions with open magnetic field lines rooted in coronal holes and magnetic loops often present in quiet sun. We have also detected compact bright loops, likely transition region loops, mostly in quiet sun. These small loop-like regions are generally devoid of network jets. In spite of different magnetic structures in the coronal hole and quiet sun in the transition region, there appears to be no substantial difference for the increase in foot-point brightness of the jets, which suggests that the generation mechanism of these network jets is likely the same in both regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا