ﻻ يوجد ملخص باللغة العربية
The concentration of measure phenomena were discovered as the mathematical background of statistical mechanics at the end of the XIX - beginning of the XX century and were then explored in mathematics of the XX-XXI centuries. At the beginning of the XXI century, it became clear that the proper utilisation of these phenomena in machine learning might transform the curse of dimensionality into the blessing of dimensionality. This paper summarises recently discovered phenomena of measure concentration which drastically simplify some machine learning problems in high dimension, and allow us to correct legacy artificial intelligence systems. The classical concentration of measure theorems state that i.i.d. random points are concentrated in a thin layer near a surface (a sphere or equators of a sphere, an average or median level set of energy or another Lipschitz function, etc.). The new stochastic separation theorems describe the thin structure of these thin layers: the random points are not only concentrated in a thin layer but are all linearly separable from the rest of the set, even for exponentially large random sets. The linear functionals for separation of points can be selected in the form of the linear Fishers discriminant. All artificial intelligence systems make errors. Non-destructive correction requires separation of the situations (samples) with errors from the samples corresponding to correct behaviour by a simple and robust classifier. The stochastic separation theorems provide us by such classifiers and a non-iterative (one-shot) procedure for learning.
High-dimensional data and high-dimensional representations of reality are inherent features of modern Artificial Intelligence systems and applications of machine learning. The well-known phenomenon of the curse of dimensionality states: many problems
One-shot anonymous unselfishness in economic games is commonly explained by social preferences, which assume that people care about the monetary payoffs of others. However, during the last ten years, research has shown that different types of unselfi
The purpose of this paper is to write a complete survey of the (spectral) manifold learning methods and nonlinear dimensionality reduction (NLDR) in data reduction. The first two NLDR methods in history were respectively published in Science in 2000
I briefly present the foundations of relativistic cosmology, which are, General Relativity Theory and the Cosmological Principle. I discuss some relativistic models, namely, Einstein static universe and Friedmann universes. The classical bibliographi
Dealing with imbalanced data is a prevalent problem while performing classification on the datasets. Many times, this problem contributes to bias while making decisions or implementing policies. Thus, it is vital to understand the factors which cause