ﻻ يوجد ملخص باللغة العربية
Unambiguous state discrimination (USD) is one of the major obstacles for practical quantum key distribution (QKD). Often overlooked, it allows efficient eavesdropping in majority of practical systems, provided the overall channel loss is above a certain threshold. Thus, to remain secure all such systems must not only monitor the actual loss, but also possess a comprehensive information on the safe loss vs. BER levels, which is often well beyond currently known security analyses. The more advanced the protocol the tougher it becomes to find and prove corresponding bounds. To get out of this vicious circle and solve the problem outright, we demonstrate a so called relativistic QKD system, which uses causality to become inherently immune to USD-based attacks. The system proves to be practical in metropolitan line-of-sight arrangements. At the same time it has a very basic structure that allows for a straightforward and comprehensive security analysis.
We present methods to strictly calculate the finite-key effects in quantum key distribution (QKD) with error rejection through two-way classical communication (TWCC) for the sending-or-not-sending twin-field protocol. Unlike the normal QKD without TW
High-dimensional quantum key distribution (QKD) provides ultimate secure communication with secure key rates that cannot be obtained by QKD protocols with binary encoding. However, so far the proposed protocols required additional experimental resour
Coherent-one-way quantum key distribution (COW-QKD), possessing the simple experimental setup and the ability against the photon-number-splitting attack, has been implemented in various experiments and commercial applications. However, recent works h
The possibility for quantum and classical communication to coexist on the same fibre is important for deployment and widespread adoption of quantum key distribution (QKD) and, more generally, a future quantum internet. While coexistence has been demo
Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper we take advantage of the properties of quantum walks to design new secure quantum key distribution sc