ﻻ يوجد ملخص باللغة العربية
Rooted, weighted continuum random trees are used to describe limits of sequences of random discrete trees. Formally, they are random quadruples $(mathcal{T},d,r,p)$, where $(mathcal{T},d)$ is a tree-like metric space, $rinmathcal{T}$ is a distinguished root, and $p$ is a probability measure on this space. The underlying branching structure is carried implicitly in the metric $d$. We explore various ways of describing the interaction between branching structure and mass in $(mathcal{T},d,r,p)$ in a way that depends on $d$ only by way of this branching structure. We introduce a notion of mass-structure equivalence and show that two rooted, weighted $mathbb{R}$-trees are equivalent in this sense if and only if the discrete hierarchies derived by i.i.d. sampling from their weights, in a manner analogous to Kingmans paintbox, have the same distribution. We introduce a family of trees, called interval partition trees that serve as representatives of mass-structure equivalence classes, and which naturally represent the laws of the aforementioned hierarchies.
We consider fixed-point equations for probability measures charging measured compact metric spaces that naturally yield continuum random trees. On the one hand, we study the existence/uniqueness of the fixed-points and the convergence of the correspo
Weighted Szeged index is a recently introduced extension of the well-known Szeged index. In this paper, we present a new tool to analyze and characterize minimum weighted Szeged index trees. We exhibit the best trees with up to 81 vertices and use th
We investigate the effective resistance $R_n$ and conductance $C_n$ between the root and leaves of a binary tree of height $n$. In this electrical network, the resistance of each edge $e$ at distance $d$ from the root is defined by $r_e=2^dX_e$ where
In this paper we study the vertex cut-trees of Galton-Watson trees conditioned to have $n$ leaves. This notion is a slight variation of Dieuleveuts vertex cut-tree of Galton-Watson trees conditioned to have $n$ vertices. Our main result is a joint Gr
This paper considers the asymptotic distribution of the longest edge of the minimal spanning tree and nearest neighbor graph on X_1,...,X_{N_n} where X_1,X_2,... are i.i.d. in Re^2 with distribution F and N_n is independent of the X_i and satisfies N