ترغب بنشر مسار تعليمي؟ اضغط هنا

Building Generalizable Agents with a Realistic and Rich 3D Environment

53   0   0.0 ( 0 )
 نشر من قبل Yi Wu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Teaching an agent to navigate in an unseen 3D environment is a challenging task, even in the event of simulated environments. To generalize to unseen environments, an agent needs to be robust to low-level variations (e.g. color, texture, object changes), and also high-level variations (e.g. layout changes of the environment). To improve overall generalization, all types of variations in the environment have to be taken under consideration via different level of data augmentation steps. To this end, we propose House3D, a rich, extensible and efficient environment that contains 45,622 human-designed 3D scenes of visually realistic houses, ranging from single-room studios to multi-storied houses, equipped with a diverse set of fully labeled 3D objects, textures and scene layouts, based on the SUNCG dataset (Song et.al.). The diversity in House3D opens the door towards scene-level augmentation, while the label-rich nature of House3D enables us to inject pixel- & task-level augmentations such as domain randomization (Toubin et. al.) and multi-task training. Using a subset of houses in House3D, we show that reinforcement learning agents trained with an enhancement of different levels of augmentations perform much better in unseen environments than our baselines with raw RGB input by over 8% in terms of navigation success rate. House3D is publicly available at http://github.com/facebookresearch/House3D.



قيم البحث

اقرأ أيضاً

A core issue with learning to optimize neural networks has been the lack of generalization to real world problems. To address this, we describe a system designed from a generalization-first perspective, learning to update optimizer hyperparameters in stead of model parameters directly using novel features, actions, and a reward function. This system outperforms Adam at all neural network tasks including on modalities not seen during training. We achieve 2x speedups on ImageNet, and a 2.5x speedup on a language modeling task using over 5 orders of magnitude more compute than the training tasks.
To improve policy robustness of deep reinforcement learning agents, a line of recent works focus on producing disturbances of the environment. Existing approaches of the literature to generate meaningful disturbances of the environment are adversaria l reinforcement learning methods. These methods set the problem as a two-player game between the protagonist agent, which learns to perform a task in an environment, and the adversary agent, which learns to disturb the protagonist via modifications of the considered environment. Both protagonist and adversary are trained with deep reinforcement learning algorithms. Alternatively, we propose in this paper to build on gradient-based adversarial attacks, usually used for classification tasks for instance, that we apply on the critic network of the protagonist to identify efficient disturbances of the environment. Rather than learning an attacker policy, which usually reveals as very complex and unstable, we leverage the knowledge of the critic network of the protagonist, to dynamically complexify the task at each step of the learning process. We show that our method, while being faster and lighter, leads to significantly better improvements in policy robustness than existing methods of the literature.
Object manipulation from 3D visual inputs poses many challenges on building generalizable perception and policy models. However, 3D assets in existing benchmarks mostly lack the diversity of 3D shapes that align with real-world intra-class complexity in topology and geometry. Here we propose SAPIEN Manipulation Skill Benchmark (ManiSkill) to benchmark manipulation skills over diverse objects in a full-physics simulator. 3D assets in ManiSkill include large intra-class topological and geometric variations. Tasks are carefully chosen to cover distinct types of manipulation challenges. Latest progress in 3D vision also makes us believe that we should customize the benchmark so that the challenge is inviting to researchers working on 3D deep learning. To this end, we simulate a moving panoramic camera that returns ego-centric point clouds or RGB-D images. In addition, we would like ManiSkill to serve a broad set of researchers interested in manipulation research. Besides supporting the learning of policies from interactions, we also support learning-from-demonstrations (LfD) methods, by providing a large number of high-quality demonstrations (~36,000 successful trajectories, ~1.5M point cloud/RGB-D frames in total). We provide baselines using 3D deep learning and LfD algorithms. All code of our benchmark (simulator, environment, SDK, and baselines) is open-sourced, and a challenge facing interdisciplinary researchers will be held based on the benchmark.
Knowledge transfer from a complex high performing model to a simpler and potentially low performing one in order to enhance its performance has been of great interest over the last few years as it finds applications in important problems such as expl ainable artificial intelligence, model compression, robust model building and learning from small data. Known approaches to this problem (viz. Knowledge Distillation, Model compression, ProfWeight, etc.) typically transfer information directly (i.e. in a single/one hop) from the complex model to the chosen simple model through schemes that modify the target or reweight training examples on which the simple model is trained. In this paper, we propose a meta-approach where we transfer information from the complex model to the simple model by dynamically selecting and/or constructing a sequence of intermediate models of decreasing complexity that are less intricate than the original complex model. Our approach can transfer information between consecutive models in the sequence using any of the previously mentioned approaches as well as work in 1-hop fashion, thus generalizing these approaches. In the experiments on real data, we observe that we get consistent gains for different choices of models over 1-hop, which on average is more than 2% and reaches up to 8% in a particular case. We also empirically analyze conditions under which the multi-hop approach is likely to be beneficial over the traditional 1-hop approach, and report other interesting insights. To the best of our knowledge, this is the first work that proposes such a multi-hop approach to perform knowledge transfer given a single high performing complex model, making it in our opinion, an important methodological contribution.
Recently, deep reinforcement learning (DRL) methods have achieved impressive performance on tasks in a variety of domains. However, neural network policies produced with DRL methods are not human-interpretable and often have difficulty generalizing t o novel scenarios. To address these issues, prior works explore learning programmatic policies that are more interpretable and structured for generalization. Yet, these works either employ limited policy representations (e.g. decision trees, state machines, or predefined program templates) or require stronger supervision (e.g. input/output state pairs or expert demonstrations). We present a framework that instead learns to synthesize a program, which details the procedure to solve a task in a flexible and expressive manner, solely from reward signals. To alleviate the difficulty of learning to compose programs to induce the desired agent behavior from scratch, we propose to first learn a program embedding space that continuously parameterizes diverse behaviors in an unsupervised manner and then search over the learned program embedding space to yield a program that maximizes the return for a given task. Experimental results demonstrate that the proposed framework not only learns to reliably synthesize task-solving programs but also outperforms DRL and program synthesis baselines while producing interpretable and more generalizable policies. We also justify the necessity of the proposed two-stage learning scheme as well as analyze various methods for learning the program embedding.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا