ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for GeV Cosmic Rays from White Dwarfs in the Local Cosmic Ray Spectra and in the Gamma-ray Emissivity of the Inner Galaxy

63   0   0.0 ( 0 )
 نشر من قبل Shiu Hang Lee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations found that electrons are accelerated to $sim$10 GeV and emit synchrotron hard X-rays in two magnetic white dwarfs (WDs), also known as cataclysmic variables (CVs). In nova outbursts of WDs, multi-GeV gamma-rays were detected inferring that protons are accelerated to 100 GeV or higher. In recent optical surveys, the WD density is found to be higher near the Sun than in the Galactic disk by a factor $sim$2.5. The cosmic rays (CR) produced by local CVs and novae will accumulate in the local bubble for $10^6$ - $10^7$ yrs. On these findings, we search for CRs from historic CVs and novae in the observed CR spectra. We model the CR spectra at the heliopause as sums of Galactic and local components based on observational data as much as possible. The initial Galactic CR electron and proton spectra are deduced from the gamma-ray emissivity, the local electron spectrum from the hard X-ray spectra at the CVs, and the local proton spectrum inferred by gamma-ray spectrum at novae. These spectral shapes are then expressed in a simple set of polynomial functions of CR energy and regressively fitted until the high-energy ($>$100 GeV) CR spectra near Earth and the Voyager-1 spectra at the heliopause are reproduced. We then extend the modeling to nuclear CR spectra and find that one spectral shape fits all local nuclear CRs and the apparent hardening of the nuclear CR spectra is caused by the roll-down of local nuclear spectra around 100 - 200 GeV. All local CR spectra populate in a limited energy band below 100 - 200 GeV and enhance gamma-ray emissivity below $sim$10 GeV. Such an enhancement is observed in the inner Galaxy, suggesting the CR fluxes from CVs and novae are substantially higher there.



قيم البحث

اقرأ أيضاً

More than 90% of the Galactic gas-related gamma-ray emissivity above 1 GeV is attributed to the decay of neutral pions formed in collisions between cosmic rays and interstellar matter, with lepton-induced processes becoming increasingly important bel ow 1 GeV. Given the high-quality measurements of the gamma-ray emissivity of local interstellar gas between ~50 MeV and ~4 GeV obtained with the Large Area Telescope on board the Fermi space observatory, it is timely to re-investigate this topic in detail, including the hadronic production mechanisms. The emissivity spectrum will allow the interstellar cosmic-ray spectrum to be determined reliably, providing a reference for origin and propagation studies as well as input to solar modulation models. A method for such an analysis and illustrative results are presented.
595 - A. W. Strong 2015
Precise gamma-ray emissivities from cosmic-ray interactions with interstellar gas have been recently derived using Fermi-LAT data, and used to constrain the local interstellar spectra of protons and leptons. We report on a continuing effort to exploi t these emissivities combined with the latest hadronic gamma-ray production cross-sections and other constraints such as synchrotron emission for the leptonic component. The interstellar spectra provide important information for heliospheric modulation, and cosmic-ray origin and propagation.
Galaxy formation simulations demonstrate that cosmic-ray (CR) feedback may be important in the launching of galactic-scale winds. CR protons dominate the bulk of the CR population, yet most observational constraints of CR feedback come from synchrotr on emission of CR electrons. In this paper, we present an analysis of 105 months of Fermi Gamma-ray Space Telescope observations of the Small Magellanic Cloud (SMC), with the aim of exploring CR feedback and transport in an external galaxy. We produce maps of the 2-300 GeV emission and detect statistically significant, extended emission along the Bar and the Wing, where active star formation is occurring. Gamma-ray emission is not detected above 13 GeV, and we set stringent upper-limits on the flux above this energy. We find the best fit to the gamma-ray spectrum is a single-component model with a power-law of index $Gamma=-2.11pm0.06pm0.06$ and an exponential cutoff energy of $E_{rm c} =13.1pm5.1pm1.6$ GeV. We assess the relative contribution of pulsars and CRs to the emission, and we find that pulsars may produce up to 14$^{+4}_{-2}$% of the flux above 100 MeV. Thus, we attribute most of the gamma-ray emission (based on its spectrum and morphology) to CR interactions with the ISM. We show that the gamma-ray emissivity of the SMC is five times smaller than that of the Milky Way and that the SMC is far below the calorimetric limit, where all CR protons experience pion losses. We interpret these findings as evidence that CRs are escaping the SMC via advection and diffusion.
Most of the diffuse Galactic GeV gamma-ray emission is produced via collisions of cosmic ray (CR) protons with ISM protons. As such the observed spectra of the gamma-rays and the CRs should be strongly linked. Recent observations of Fermi-LAT exhibit a hardening of the gamma-ray spectrum at around a hundred GeV, between the Sagittarius and Carina tangents, and a further hardening at a few degrees above and below the Galactic plane. However, standard CR propagation models that assume a time independent source distribution and a location independent diffusion cannot give rise to a spatially dependent CR (and hence gamma-ray) spectral slopes. Here we consider a dynamic spiral arm model in which the distribution of CR sources is concentrated in the (dynamic) spiral arms, and we study the effects of this model on the $pi^0$-decay produced gamma-ray spectra. Within this model, near the Galactic arms the observed gamma-ray spectral slope is not trivially related to the CR injection spectrum and energy dependence of the diffusion coefficient. We find unique signatures that agree with the Fermi-LAT observations. This model also provides a physical explanation for the difference between the local CR spectral slope and the CR slope inferred from the average gamma-ray spectrum.
320 - G. Di Sciascio 2016
LHAASO is expected to be the most sensitive project to face the open problems in Galactic cosmic ray physics through a combined study of photon- and charged particle-induced extensive air showers in the energy range 10$^{11}$ - 10$^{17}$ eV. This new generation multi-component experiment will be able of continuously surveying the gamma-ray sky for steady and transient sources from about 100 GeV to PeV energies, thus opening for the first time the 10$^2$--10$^3$ TeV range to the direct observations of the high energy cosmic ray sources. In addition, the different observables (electronic, muonic and Cherenkov components) that will be measured in LHAASO will allow the study of the origin, acceleration and propagation of the radiation through a measurement of energy spectrum, elemental composition and anisotropy with unprecedented resolution. The installation of the experiment started at very high altitude in China (Daocheng site, Sichuan province, 4410 m a.s.l.). The commissioning of one fourth of the detector will be implemented in 2018. The completion of the installation is expected by the end of 2021.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا