ﻻ يوجد ملخص باللغة العربية
Face authentication systems are becoming increasingly prevalent, especially with the rapid development of Deep Learning technologies. However, human facial information is easy to be captured and reproduced, which makes face authentication systems vulnerable to various attacks. Liveness detection is an important defense technique to prevent such attacks, but existing solutions did not provide clear and strong security guarantees, especially in terms of time. To overcome these limitations, we propose a new liveness detection protocol called Face Flashing that significantly increases the bar for launching successful attacks on face authentication systems. By randomly flashing well-designed pictures on a screen and analyzing the reflected light, our protocol has leveraged physical characteristics of human faces: reflection processing at the speed of light, unique textual features, and uneven 3D shapes. Cooperating with working mechanism of the screen and digital cameras, our protocol is able to detect subtle traces left by an attacking process. To demonstrate the effectiveness of Face Flashing, we implemented a prototype and performed thorough evaluations with large data set collected from real-world scenarios. The results show that our Timing Verification can effectively detect the time gap between legitimate authentications and malicious cases. Our Face Verification can also differentiate 2D plane from 3D objects accurately. The overall accuracy of our liveness detection system is 98.8%, and its robustness was evaluated in different scenarios. In the worst case, our systems accuracy decreased to a still-high 97.3%.
Last-generation GAN models allow to generate synthetic images which are visually indistinguishable from natural ones, raising the need to develop tools to distinguish fake and natural images thus contributing to preserve the trustworthiness of digita
The vulnerability of Face Recognition System (FRS) to various kind of attacks (both direct and in-direct attacks) and face morphing attacks has received a great interest from the biometric community. The goal of a morphing attack is to subvert the FR
While it is known that unconditionally secure position-based cryptography is impossible both in the classical and the quantum setting, it has been shown that some quantum protocols for position verification are secure against attackers which share a
Face recognition has obtained remarkable progress in recent years due to the great improvement of deep convolutional neural networks (CNNs). However, deep CNNs are vulnerable to adversarial examples, which can cause fateful consequences in real-world
Face authentication usually utilizes deep learning models to verify users with high recognition accuracy. However, face authentication systems are vulnerable to various attacks that cheat the models by manipulating the digital counterparts of human f