ﻻ يوجد ملخص باللغة العربية
When using atom-centered integration grids, the portion of the grid that belongs to a certain atom also moves when this atom is displaced. In the paper, we investigate the moving-grid effect in the calculation of the harmonic vibrational frequencies when using all-electron full-potential numeric atomic-centered orbitals as the basis set. We find that, unlike the first order derivative (i.e., forces), the moving-grid effect plays an essential role for the second order derivatives (i.e., vibrational frequencies). Further analysis reveals that predominantly diagonal force constant terms are affected, which can be bypassed efficiently by invoking translational symmetry. Our approaches have been demonstrated in both finite (molecules) and extended (periodic) systems.
The Bethe-Salpeter equation (BSE) based on GW quasiparticle levels is a successful approach for calculating the optical gaps and spectra of solids and also for predicting the neutral excitations of small molecules. We here present an all-electron imp
We present an efficient, linear-scaling implementation for building the (screened) Hartree-Fock exchange (HFX) matrix for periodic systems within the framework of numerical atomic orbital (NAO) basis functions. Our implementation is based on the loca
Although usually considered as a technique for predicting electron states in dense plasmas, atom-in-jellium calculations can be used to predict the mean displacement of the ion from its equilibrium position in colder matter, as a function of compress
Atom-in-jellium calculations of the Einstein frequency were used to calculate the mean displacement of an ion over a wide range of compression and temperature. Expressed as a fraction of the Wigner-Seitz radius, the displacement is a measure of the a
Low-loss optical communication requires light sources at 1.5um wavelengths. Experiments showed without much theoretical guidance that InAs/GaAs quantum dots (QDs) may be tuned to such wavelengths by adjusting the In fraction in an InxGa1-xAs strain-r