ﻻ يوجد ملخص باللغة العربية
Superconducting microwave circuits show great potential for practical quantum technological applications such as quantum information processing. However, fast and on-demand initialization of the quantum degrees of freedom in these devices remains a challenge. Here, we experimentally implement a tunable heat sink that is potentially suitable for the initialization of superconducting qubits. Our device consists of two coupled resonators. The first resonator has a high quality factor and a fixed frequency whereas the second resonator is designed to have a low quality factor and a tunable resonance frequency. We engineer the low quality factor using an on-chip resistor and the frequency tunability using a superconducting quantum interference device. When the two resonators are in resonance, the photons in the high-quality resonator can be efficiently dissipated. We show that the corresponding loaded quality factor can be tuned from above $10^5$ down to a few thousand at 10 GHz in good quantitative agreement with our theoretical model.
The emerging quantum technological applications call for fast and accurate initialization of the corresponding devices to low-entropy quantum states. To this end, we theoretically study a recently demonstrated quantum-circuit refrigerator in the case
We demonstrate a fully electric control of the heat flux, which can be continuously modulated by an externally applied electric field in PbTiO$_3$, a prototypical ferroelectric perovskite, revealing the mechanisms by which experimentally accessible f
Quantum thermodynamics is emerging both as a topic of fundamental research and as means to understand and potentially improve the performance of quantum devices. A prominent platform for achieving the necessary manipulation of quantum states is super
We present measurements of superconducting flux qubits embedded in a three dimensional copper cavity. The qubits are fabricated on a sapphire substrate and are measured by coupling them inductively to an on-chip superconducting resonator located in t
Magnetic flux tunability is an essential feature in most approaches to quantum computing based on superconducting qubits. Independent control of the fluxes in multiple loops is hampered by crosstalk. Calibrating flux crosstalk becomes a challenging t