ﻻ يوجد ملخص باللغة العربية
We present spectroscopic measurements of the Rossiter-McLaughlin effect for the planet b of Kepler-9 multi-transiting planet system. The resulting sky-projected spin-orbit angle is $lambda=-13^{circ} pm 16^{circ}$, which favors an aligned system and strongly disfavors highly misaligned, polar, and retrograde orbits. Including Kepler-9, there are now a total of 4 Rossiter-McLaughlin effect measurements for multiplanet systems, all of which are consistent with spin-orbit alignment.
The discovery of multiple transiting planetary systems offers new possibilities for characterising exoplanets and understanding their formation. The Kepler-9 system contains two Saturn-mass planets, Kepler-9b and 9c. Using evolution models of gas gia
In an effort to measure the Rossiter-McLaughlin effect for the TRAPPIST-1 system, we performed high-resolution spectroscopy during transits of planets e, f, and b. The spectra were obtained with the InfraRed Doppler spectrograph on the Subaru 8.2-m t
This paper reports on the detailed characterisation of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved ($
We measure the rotation periods of 19 stars in the {it Kepler} transiting planetary systems, $P_{rm rot, astero}$ from asteroseismology and $P_{rm rot, phot}$ from photometric variation of their lightcurve. Two stars exhibit two clear peaks in the Lo
We present a comprehensive catalog of cool (period $Pgtrsim 2,mathrm{yr}$) transiting planet candidates in the four-year light curves from the prime kepler mission. Most of the candidates show only one or two transits and have largely been missed in