ترغب بنشر مسار تعليمي؟ اضغط هنا

Transiting Planets near the Snow Line from Kepler. I. Catalog

86   0   0.0 ( 0 )
 نشر من قبل Hajime Kawahara
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive catalog of cool (period $Pgtrsim 2,mathrm{yr}$) transiting planet candidates in the four-year light curves from the prime kepler mission. Most of the candidates show only one or two transits and have largely been missed in the original Kepler Object of Interest catalog. Our catalog is based on all known such candidates in the literature as well as new candidates from the search in this paper, and provides a resource to explore the planet population near the snow line of Sun-like stars. We homogeneously performed pixel-level vetting, stellar characterization with GAIA parallax and archival/Subaru spectroscopy, and light-curve modeling to derive planet parameters and to eliminate stellar binaries. The resulting clean sample consists of 67 planet candidates whose radii are typically constrained to 5%, in which 23 are newly reported. The number of Jupiter-sized candidates (29 with $r>8,R_oplus$) in the sample is consistent with the Doppler occurrence. The smaller candidates are more prevalent (23 with $4<r/R_oplus<8$, 15 with $r/R_oplus<4$) and suggest that long-period Neptune-sized planets are at least as common as the Jupiter-sized ones, although our sample is yet to be corrected for detection completeness. If the sample is assumed to be complete, these numbers imply the occurrence rate of $0.39pm0.07$ planets with $4<r/R_oplus<14$ and $2<P/mathrm{yr}<20$ per FGK dwarf. The stars hosting candidates with $r>4,R_oplus$ have systematically higher [Fe/H] than the Kepler field stars, providing evidence that giant planet--metallicity correlation extends to $P>2,mathrm{yr}$.

قيم البحث

اقرأ أيضاً

Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called binary stars. While long anticipated, the existence of a circumbinary planet orbiting such a pair of normal stars was not definitively established until the disco very of Kepler-16. Incontrovertible evidence was provided by the miniature eclipses (transits) of the stars by the planet. However, questions remain about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we present two additional transiting circumbinary planets, Kepler-34 and Kepler-35. Each is a low-density gas giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 orbits two Sun-like stars every 289 days, while Kepler-35 orbits a pair of smaller stars (89% and 81% of the Suns mass) every 131 days. Due to the orbital motion of the stars, the planets experience large multi-periodic variations in incident stellar radiation. The observed rate of circumbinary planets implies > ~1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.
We visually inspected the light curves of 7557 Kepler Objects of Interest (KOIs) to search for single transit events (STEs) possibly due to long-period giant planets. We identified 28 STEs in 24 KOIs, among which 14 events are newly reported in this paper. We estimate the radius and orbital period of the objects causing STEs by fitting the STE light curves simultaneously with the transits of the other planets in the system or with the prior information on the host star density. As a result, we found that STEs in seven of those systems are consistent with Neptune- to Jupiter-sized objects of orbital periods ranging from a few to $sim$ $20,mathrm{yr}$. We also estimate that $gtrsim20%$ of the compact multi-transiting systems host cool giant planets with periods $gtrsim 3,mathrm{yr}$ on the basis of their occurrence in the KOIs with multiple candidates, assuming the small mutual inclination between inner and outer planetary orbits.
75 - Mathieu Havel 2011
The discovery of multiple transiting planetary systems offers new possibilities for characterising exoplanets and understanding their formation. The Kepler-9 system contains two Saturn-mass planets, Kepler-9b and 9c. Using evolution models of gas gia nts that reproduce the sizes of known transiting planets and accounting for all sources of uncertainties, we show that Kepler-9b (respectively 9c) contains $45^{+17}_{-12}$,mearth (resp. $31^{+13}_{-10}$,mearth) of hydrogen and helium and $35^{+10}_{-15}$,mearth (resp. $24^{+10}_{-12}$,mearth) of heavy elements. More accurate constraints are obtained when comparing planets 9b and 9c: the ratio of the total mass fractions of heavy elements are $Z_{rm b}/Z_{rm c}=1.02pm 0.14$, indicating that, although the masses of the planets differ, their global composition is very similar, an unexpected result for formation models. Using evolution models for super-Earths, we find that Kepler-9d must contain less than 0.1% of its mass in hydrogen and helium and predict a mostly rocky structure with a total mass between 4 and 16,mearth.
The Kepler mission has detected a number of transiting circumbinary planets (CBPs). Although currently not detected, exomoons could be orbiting some of these CBPs, and they might be suitable for harboring life. A necessary condition for the existence of such exomoons is their long-term dynamical stability. Here, we investigate the stability of exomoons around the Kepler CBPs using numerical $N$-body integrations. We determine regions of stability and obtain stability maps in the (a_m,i_pm) plane, where a_m is the initial exolunar semimajor axis with respect to the CBP, and i_pm is the initial inclination of the orbit of the exomoon around the planet with respect to the orbit of the planet around the stellar binary. Ignoring any dependence on i_pm, for most Kepler CBPs the stability regions are well described by the location of the 1:1 mean motion commensurability of the binary orbit with the orbit of the moon around the CBP. This is related to a destabilizing effect of the binary compared to the case if the binary were replaced by a single body, and which is borne out by corresponding 3-body integrations. For high inclinations, the evolution is dominated by Lidov-Kozai oscillations, which can bring moons in dynamically stable orbits to close proximity within the CBP, triggering strong interactions such as tidal evolution, tidal disruption, or direct collisions. This suggests that there is a dearth of highly-inclined exomoons around the Kepler CBPs, whereas coplanar exomoons are dynamically allowed.
We present an investigation of twelve candidate transiting planets from Kepler with orbital periods ranging from 34 to 207 days, selected from initial indications that they are small and potentially in the habitable zone (HZ) of their parent stars. F ew of these objects are known. The expected Doppler signals are too small to confirm them by demonstrating that their masses are in the planetary regime. Here we verify their planetary nature by validating them statistically using the BLENDER technique, which simulates large numbers of false positives and compares the resulting light curves with the Kepler photometry. This analysis was supplemented with new follow-up observations (high-resolution optical and near-infrared spectroscopy, adaptive optics imaging, and speckle interferometry), as well as an analysis of the flux centroids. For eleven of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01, 3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the likelihood they are true planets is far greater than that of a false positive, to a confidence level of 99.73% (3 sigma) or higher. For KOI-4427.01 the confidence level is about 99.2% (2.6 sigma). With our accurate characterization of the GKM host stars, the derived planetary radii range from 1.1 to 2.7 R_Earth. All twelve objects are confirmed to be in the HZ, and nine are small enough to be rocky. Excluding three of them that have been previously validated by others, our study doubles the number of known rocky planets in the HZ. KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most similar to the Earth discovered to date when considering their size and incident flux jointly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا