ﻻ يوجد ملخص باللغة العربية
This paper presents how thermal mean field effects are incorporated consistently in the hydrodynamical modelling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio of the bulk viscosity over its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the $beta_lambda$-function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cut-off. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of $zeta/tau_R$ for gases obeying Bose-Einstein statistics.
The microscopic formulae of the bulk viscosity $zeta $ and the corresponding relaxation time $tau_{Pi}$ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulae to the pionic fl
This talk is devoted to review the field of strangeness production in (ultra-)relativistic heavy ion collisions within our present theoretical understanding. Historically there have been (at least) three major ideas for the interest in the production
The thermodynamic geometry formalism is applied to strongly interacting matter to estimate the deconfinement temperature. The curved thermodynamic metric for Quantum Chromodynamics (QCD) is evaluated on the basis of lattice data, whereas the hadron r
In this study we investigate the dynamics of strongly interacting parton-hadron matter by calculating the centrality dependence of direct photons produced in Au+Au collisions at $sqrt{s_{NN}}=200$ GeV within the Parton-Hadron-String Dynamics (PHSD) t
We study the kinetic and chemical equilibration in infinite parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results - inc