ﻻ يوجد ملخص باللغة العربية
We study the kinetic and chemical equilibration in infinite parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results - including the partonic equation of state - in thermodynamic equilibrium. The infinite matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential) and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa) occurs dynamically by interactions. Different thermodynamical distributions of the strongly-interacting quark-gluon plasma (sQGP) are addressed and discussed.
In this study we investigate the dynamics of strongly interacting parton-hadron matter by calculating the centrality dependence of direct photons produced in Au+Au collisions at $sqrt{s_{NN}}=200$ GeV within the Parton-Hadron-String Dynamics (PHSD) t
This talk is devoted to review the field of strangeness production in (ultra-)relativistic heavy ion collisions within our present theoretical understanding. Historically there have been (at least) three major ideas for the interest in the production
The thermodynamic geometry formalism is applied to strongly interacting matter to estimate the deconfinement temperature. The curved thermodynamic metric for Quantum Chromodynamics (QCD) is evaluated on the basis of lattice data, whereas the hadron r
Ultrarelativistic collisions between heavy nuclei briefly generate the quark-gluon plasma (QGP), a new state of matter characterized by deconfined partons last seen microseconds after the Big Bang. The properties of the QGP are of intense interest, a
The correlation between baryon number and strangeness elucidates the nature of strongly interacting matter, such as that formed transiently in high-energy nuclear collisions. This diagnostic can be extracted theoretically from lattice QCD calculation