ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-ground-state cooling of atoms optically trapped 300nm away from a hot surface

60   0   0.0 ( 0 )
 نشر من قبل Philipp Schneeweiss
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Laser-cooled atoms coupled to nanophotonic structures constitute a powerful research platform for the exploration of new regimes of light-matter interaction. While the initialization of the atomic internal degrees of freedom in these systems has been achieved, a full preparation of the atomic quantum state also requires controlling the center of mass motion of the atoms at the quantum level. Obtaining such control is not straightforward, due to the close vicinity of the atoms to the photonic system that is at ambient temperature. Here, we demonstrate cooling of individual neutral Cesium atoms, that are optically interfaced with light in an optical nanofiber, preparing them close to their three-dimensional motional ground state. The atoms are localized less than 300nm away from the hot fiber surface. Ground-state preparation is achieved by performing degenerate Raman cooling, and the atomic temperature is inferred from the analysis of heterodyne fluorescence spectroscopy signals. Our cooling method can be implemented either with externally applied or guided light fields. Moreover, it relies on polarization gradients which naturally occur for strongly confined guided optical fields. Thus, this method can be implemented in any trap based on nanophotonic structures. Our results provide an ideal starting point for the study of novel effects such as light-induced self-organization, the measurement of novel optical forces, and the investigation of heat transfer at the nanoscale using quantum probes.



قيم البحث

اقرأ أيضاً

We demonstrate ground-state cooling of a trapped ion using radio-frequency (RF) radiation. This is a powerful tool for the implementation of quantum operations, where RF or microwave radiation instead of lasers is used for motional quantum state engi neering. We measure a mean phonon number of $overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the n=0 and n=1 Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.
The apparent conflict between general relativity and quantum mechanics remains one of the unresolved mysteries of the physical world. According to recent theories, this conflict results in gravity-induced quantum state reduction of Schrodinger cats, quantum superpositions of macroscopic observables. In recent years, great progress has been made in cooling micromechanical resonators towards their quantum mechanical ground state. This work is an important step towards the creation of Schrodinger cats in the laboratory, and the study of their destruction by decoherence. A direct test of the gravity-induced state reduction scenario may therefore be within reach. However, a recent analysis shows that for all systems reported to date, quantum superpositions are destroyed by environmental decoherence long before gravitational state reduction takes effect. Here we report optical trapping of glass microspheres in vacuum with high oscillation frequencies, and cooling of the center-of-mass motion from room temperature to a minimum temperature of 1.5 mK. This new system eliminates the physical contact inherent to clamped cantilevers, and can allow ground-state cooling from room temperature. After cooling, the optical trap can be switched off, allowing a microsphere to undergo free-fall in vacuum. During free-fall, light scattering and other sources of environmental decoherence are absent, so this system is ideal for studying gravitational state reduction. A cooled optically trapped object in vacuum can also be used to search for non-Newtonian gravity forces at small scales, measure the impact of a single air molecule, and even produce Schrodinger cats of living organisms.
We study, both experimentally and theoretically, electromagnetically induced transparency cooling of the drumhead modes of planar 2-dimensional arrays with up to $Napprox 190$ Be${}^+$ ions stored in a Penning trap. Substantial sub-Doppler cooling is observed for all $N$ drumhead modes. Quantitative measurements for the center-of-mass mode show near ground state cooling with motional quantum numbers of $bar{n} = 0.3pm0.2$ obtained within $200~mu s$. The measured cooling rate is faster than that predicted by single particle theory, consistent with a quantum many-body calculation. For the lower frequency drumhead modes, quantitative temperature measurements are limited by apparent damping and frequency instabilities, but near ground state cooling of the full bandwidth is strongly suggested. This advancement will greatly improve the performance of large trapped ion crystals in quantum information and quantum metrology applications.
We theoretically analyse the ground-state cooling of optically levitated nanosphere in unresolved- sideband regime by introducing a coupled high-quality-factor cavity. On account of the quantum interference stemming from the presence of the coupled c avity, the spectral density of the optical force exerting on the nanosphere gets changed and then the symmetry between the heating and the cooling processes is broken. Through adjusting the detuning of strong-dissipative cavity mode, one obtains an enhanced net cooling rate for the nanosphere. It is illustrated that the ground state cooling can be realized in the unresolved sideband regime even if the effective optomechanical coupling is weaker than the frequency of the nanosphere, which can be understood by the picture that the effective interplay of the nanosphere and the auxiliary cavity mode brings the system back to an effective resolved regime. Besides, the coupled cavity refines the dynamical stability of the system.
We report experimental observations of large Bragg reflection from arrays of cold atoms trapped near a one-dimensional nanoscale waveguide. By using an optical lattice in the evanescent field surrounding a nanofiber with a period nearly commensurate with the resonant wavelength, we observe a reflectance of up to 75% for the guided mode. Each atom behaves as a partially-reflecting mirror and an ordered chain of about 2000 atoms is sufficient to realize an efficient Bragg mirror. Measurements of the reflection spectra as a function of the lattice period and the probe polarization are reported. The latter shows the effect of the chiral character of nanoscale waveguides on this reflection. The ability to control photon transport in 1D waveguides coupled to spin systems would enable novel quantum network capabilities and the study of many-body effects emerging from long-range interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا