ﻻ يوجد ملخص باللغة العربية
SrRuO$_3$ (SRO) films are known to exhibit insulating behavior as their thickness approaches four unit cells. We employ electron energy$-$loss (EEL) spectroscopy to probe the spatially resolved electronic structures of both insulating and conducting SRO to correlate them with the metal$-$insulator transition (MIT). Importantly, the central layer of the ultrathin insulating film exhibits distinct features from the metallic SRO. Moreover, EEL near edge spectra adjacent to the SrTiO$_3$ (STO) substrate or to the capping layer are remarkably similar to those of STO. The site$-$projected density of states based on density functional theory (DFT) partially reflects the characteristics of the spectra of these layers. These results may provide important information on the possible influence of STO on the electronic states of ultrathin SRO.
A notion of the Berry phase is a powerful means to unravel the non-trivial role of topology in various novel phenomena observed in chiral magnetic materials and structures. A celebrated example is the intrinsic anomalous Hall effect (AHE) driven by t
Ultrathin films of the itinerant ferromagnet SrRuO$_3$ were studied using transport and magnto-optic polar Kerr effect. We find that below 4 monolayers the films become insulating and their magnetic character changes as they loose their simple ferrom
Metallic oxide SrVO3 represents a prototype system for the study of the mechanism behind thickness-induced metal-to-insulator transition (MIT) or crossover in thin films due to its simple cubic symmetry with one electron in the 3d state in the bulk.
Transport in ultrathin films of LaNiO3 evolves from a metallic to a strongly localized character as the films thickness is reduced and the sheet resistance reaches a value close to h/e2, the quantum of resistance in two dimensions. In the intermediat
Dimensionality control in the LaNiO3 (LNO) heterostructure has attracted attention due to its two-dimensional (2D) electronic structure was predicted to have an orbital ordered insulating ground state, analogous to that of the parent compound of high