ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Binary Residual Representations for Domain-specific Video Streaming

67   0   0.0 ( 0 )
 نشر من قبل Yi-Hsuan Tsai
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study domain-specific video streaming. Specifically, we target a streaming setting where the videos to be streamed from a server to a client are all in the same domain and they have to be compressed to a small size for low-latency transmission. Several popular video streaming services, such as the video game streaming services of GeForce Now and Twitch, fall in this category. While conventional video compression standards such as H.264 are commonly used for this task, we hypothesize that one can leverage the property that the videos are all in the same domain to achieve better video quality. Based on this hypothesis, we propose a novel video compression pipeline. Specifically, we first apply H.264 to compress domain-specific videos. We then train a novel binary autoencoder to encode the leftover domain-specific residual information frame-by-frame into binary representations. These binary representations are then compressed and sent to the client together with the H.264 stream. In our experiments, we show that our pipeline yields consistent gains over standard H.264 compression across several benchmark datasets while using the same channel bandwidth.



قيم البحث

اقرأ أيضاً

93 - Miao Liu , Xin Chen , Yun Zhang 2019
We address the challenging problem of learning motion representations using deep models for video recognition. To this end, we make use of attention modules that learn to highlight regions in the video and aggregate features for recognition. Specific ally, we propose to leverage output attention maps as a vehicle to transfer the learned representation from a motion (flow) network to an RGB network. We systematically study the design of attention modules, and develop a novel method for attention distillation. Our method is evaluated on major action benchmarks, and consistently improves the performance of the baseline RGB network by a significant margin. Moreover, we demonstrate that our attention maps can leverage motion cues in learning to identify the location of actions in video frames. We believe our method provides a step towards learning motion-aware representations in deep models. Our project page is available at https://aptx4869lm.github.io/AttentionDistillation/
Adaptive Bit Rate (ABR) decision plays a crucial role for ensuring satisfactory Quality of Experience (QoE) in video streaming applications, in which past network statistics are mainly leveraged for future network bandwidth prediction. However, most algorithms, either rules-based or learning-driven approaches, feed throughput traces or classified traces based on traditional statistics (i.e., mean/standard deviation) to drive ABR decision, leading to compromised performances in specific scenarios. Given the diverse network connections (e.g., WiFi, cellular and wired link) from time to time, this paper thus proposes to learn the ANT (a.k.a., Accurate Network Throughput) model to characterize the full spectrum of network throughput dynamics in the past for deriving the proper network condition associated with a specific cluster of network throughput segments (NTS). Each cluster of NTS is then used to generate a dedicated ABR model, by which we wish to better capture the network dynamics for diverse connections. We have integrated the ANT model with existing reinforcement learning (RL)-based ABR decision engine, where different ABR models are applied to respond to the accurate network sensing for better rate decision. Extensive experiment results show that our approach can significantly improve the user QoE by 65.5% and 31.3% respectively, compared with the state-of-the-art Pensive and Oboe, across a wide range of network scenarios.
We tackle the problem of person re-identification in video setting in this paper, which has been viewed as a crucial task in many applications. Meanwhile, it is very challenging since the task requires learning effective representations from video se quences with heterogeneous spatial-temporal information. We present a novel method - Spatial-Temporal Synergic Residual Network (STSRN) for this problem. STSRN contains a spatial residual extractor, a temporal residual processor and a spatial-temporal smooth module. The smoother can alleviate sample noises along the spatial-temporal dimensions thus enable STSRN extracts more robust spatial-temporal features of consecutive frames. Extensive experiments are conducted on several challenging datasets including iLIDS-VID, PRID2011 and MARS. The results demonstrate that the proposed method achieves consistently superior performance over most of state-of-the-art methods.
This paper proposes a novel memory-based online video representation that is efficient, accurate and predictive. This is in contrast to prior works that often rely on computationally heavy 3D convolutions, ignore actual motion when aligning features over time, or operate in an off-line mode to utilize future frames. In particular, our memory (i) holds the feature representation, (ii) is spatially warped over time to compensate for observer and scene motions, (iii) can carry long-term information, and (iv) enables predicting feature representations in future frames. By exploring a variant that operates at multiple temporal scales, we efficiently learn across even longer time horizons. We apply our online framework to object detection in videos, obtaining a large 2.3 times speed-up and losing only 0.9% mAP on ImageNet-VID dataset, compared to prior works that even use future frames. Finally, we demonstrate the predictive property of our representation in two novel detection setups, where features are propagated over time to (i) significantly enhance a real-time detector by more than 10% mAP in a multi-threaded online setup and to (ii) anticipate objects in future frames.
Domain adaptation techniques, which focus on adapting models between distributionally different domains, are rarely explored in the video recognition area due to the significant spatial and temporal shifts across the source (i.e. training) and target (i.e. test) domains. As such, recent works on visual domain adaptation which leverage adversarial learning to unify the source and target video representations and strengthen the feature transferability are not highly effective on the videos. To overcome this limitation, in this paper, we learn a domain-agnostic video classifier instead of learning domain-invariant representations, and propose an Adversarial Bipartite Graph (ABG) learning framework which directly models the source-target interactions with a network topology of the bipartite graph. Specifically, the source and target frames are sampled as heterogeneous vertexes while the edges connecting two types of nodes measure the affinity among them. Through message-passing, each vertex aggregates the features from its heterogeneous neighbors, forcing the features coming from the same class to be mixed evenly. Explicitly exposing the video classifier to such cross-domain representations at the training and test stages makes our model less biased to the labeled source data, which in-turn results in achieving a better generalization on the target domain. To further enhance the model capacity and testify the robustness of the proposed architecture on difficult transfer tasks, we extend our model to work in a semi-supervised setting using an additional video-level bipartite graph. Extensive experiments conducted on four benchmarks evidence the effectiveness of the proposed approach over the SOTA methods on the task of video recognition.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا