ﻻ يوجد ملخص باللغة العربية
The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. The sample average value for the radio scale heights of the halo are 1.1 +/- 0.3kpc in C-band and 1.4 +/- 0.7kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, the normalized scale height shows a tight anticorrelation with the mass surface density. The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.
The CHANG-ES galaxy sample consists of 35 nearby edge-on galaxies that have been observed using the VLA at 1.6 GHz and 6.0 GHz. Here we present the 3rd data release of our sample, namely the B-configuration 1.6 GHz sample. In addition, we make availa
We analyze the application of star formation rate (SFR) calibrations using H$alpha$ and 22 micron infrared imaging data in predicting the thermal radio component for a test sample of 3 edge-on galaxies (NGC 891, NGC 3044, and NGC 4631) in the Continu
NGC 4631 is an interacting galaxy which exhibits one of the largest gaseous halos observed among edge-on galaxies. We aim to examine the synchrotron and polarization properties of its disk and halo emission with new radio continuum data. Radio contin
Context. The magnetic field in spiral galaxies is known to have a large-scale spiral structure along the galactic disk and is observed as X-shaped in the halo of some galaxies. While the disk field can be well explained by dynamo action, the 3-dimens
The CHANG-ES (Continuum Halos in Nearby Galaxies) survey of 35 nearby edge-on galaxies is revealing new and sometimes unexpected and startling results in their radio continuum emission. The observations were in wide bandwidths centered at 1.6 and 6.0