ﻻ يوجد ملخص باللغة العربية
The CHANG-ES (Continuum Halos in Nearby Galaxies) survey of 35 nearby edge-on galaxies is revealing new and sometimes unexpected and startling results in their radio continuum emission. The observations were in wide bandwidths centered at 1.6 and 6.0 GHz. Unique to this survey is full polarization data showing magnetic field structures in unprecedented detail, resolution and sensitivity for such a large sample. A wide range of new results are reported here, some never before seen in any galaxy. We see circular polarization and variability in active galactic nuclei (AGNs), in-disk discrete features, disk-halo structures sometimes only seen in polarization, and broad-scale halos with reversing magnetic fields, among others. This paper summarizes some of the CHANG-ES results seen thus far. Released images can be found at https://www.queensu.ca/changes.
We present the first results from the CHANG-ES survey, a new survey of 35 edge-on galaxies to search for both in-disk as well as extra-planar radio continuum emission. The motivation and science case for the survey are presented in a companion paper
We report on C-band (5 - 7 GHz) observations of the galaxy, NGC~2992, from the CHANG-ES sample. This galaxy displays an embedded nuclear double-lobed radio morphology within its spiral disk, as revealed in linearly polarized emission but {it not} in
We detect 5 galaxies in the CHANG-ES (Continuum Halos in Nearby Galaxies -- an EVLA Survey) sample that show circular polarization (CP) at L-band in our high resolution data sets. Two of the galaxies (NGC~4388 and NGC~4845) show strong Stokes $V/I,eq
Context. The magnetic field in spiral galaxies is known to have a large-scale spiral structure along the galactic disk and is observed as X-shaped in the halo of some galaxies. While the disk field can be well explained by dynamo action, the 3-dimens
We introduce a new survey to map the radio continuum halos of a sample of 35 edge-on spiral galaxies at 1.5 GHz and 6 GHz in all polarization products. The survey is exploiting the new wide bandwidth capabilities of the Karl G. Jansky Very Large Arra