ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of non-Fermi liquid behavior in hole doped Eu2Ir2O7

76   0   0.0 ( 0 )
 نشر من قبل Subham Majumdar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Weyl semimetallic compound Eu2Ir2O7 along with its hole doped derivatives (which is achieved by substituting trivalent Eu by divalent Sr) are investigated through transport, magnetic and calorimetric studies. The metal-insulator transition (MIT) temperature is found to get substantially reduced with hole doping and for 10% Sr doping the composition is metallic down to temperature as low as 5 K. These doped compounds are found to violate the Mott-Ioffe-Regel condition for minimum electrical conductivity and show distinct signature of non-Fermi liquid behavior at low temperature. The MIT in the doped compounds does not correlate with the magnetic transition point and Anderson-Mott type disorder induced localization may be attributed to the ground state insulating phase. The observed non-Fermi liquid behavior can be understood on the basis of disorder induced distribution of spin orbit coupling parameter which is markedly different in case of Ir4+ and Ir5+ ions.



قيم البحث

اقرأ أيضاً

420 - L. Y. Xing , X. Shi , P. Richard 2016
We synthesized a series of V-doped LiFe$_{1-x}$V$_x$As single crystals. The superconducting transition temperature $T_c$ of LiFeAs decreases rapidly at a rate of 7 K per 1% V. The Hall coefficient of LiFeAs switches from negative to positive with 4.2 % V doping, showing that V doping introduces hole carriers. This observation is further confirmed by the evaluation of the Fermi surface volume measured by angle-resolved photoemission spectroscopy (ARPES), from which a 0.3 hole doping per V atom introduced is deduced. Interestingly, the introduction of holes does not follow a rigid band shift. We also show that the temperature evolution of the electrical resistivity as a function of doping is consistent with a crossover from a Fermi liquid to a non-Fermi liquid. Our ARPES data indicate that the non-Fermi liquid behavior is mostly enhanced when one of the hole $d_{xz}/d_{yz}$ Fermi surfaces is well nested by the antiferromagnetic wave vector to the inner electron Fermi surface pocket with the $d_{xy}$ orbital character. The magnetic susceptibility of LiFe$_{1-x}$V$_x$As suggests the presence of strong magnetic impurities following V doping, thus providing a natural explanation to the rapid suppression of superconductivity upon V doping.
We report measurements of the bulk magnetic susceptibility and ^{29}Si nuclear magnetic resonance (NMR) linewidth in the heavy-fermion alloy CeRhRuSi_2. The linewidth increases rapidly with decreasing temperature and reaches large values at low tempe ratures, which strongly suggests the wide distributions of local susceptibilities chi_j obtained in disorder-driven theories of non-Fermi-liquid (NFL) behavior. The NMR linewidths agree well with distribution functions P(chi) which fit bulk susceptibility and specific heat data. The apparent return to Fermi-liquid behavior observed below 1 K is manifested in the vanishing of P(chi) as chi to infty, suggesting the absence of strong magnetic response at low energies. Our results indicate the need for an extension of some current theories of disorder-driven NFL behavior in order to incorporate this low-temperature crossover.
187 - Xiao-Yong Feng , Tai-Kai Ng 2013
In this paper we study the low temperature behaviors of a system of Bose-Fermi mixtures at two dimensions. Within a self-consistent ladder diagram approximation, we show that at nonzero temperatures $Trightarrow0$ the fermions exhibit non-fermi liqui d behavior. We propose that this is a general feature of Bose-Fermi mixtures at two dimensions. An experimental signature of this new state is proposed.
The reflectivity of the itinerant ferromagnet SrRuO_3 has been measured between 50 and 25,000 cm-1 at temperatures ranging from 40 to 300 K, and used to obtain conductivity, scattering rate, and effective mass as a function of frequency and temperatu re. We find that at low temperatures the conductivity falls unusually slowly as a function of frequency (proportional to omega^{-1/2}), and at high temperatures it even appears to increase as a function of frequency in the far-infrared limit. The data suggest that the charge dynamics of SrRuO_3 are substantially different from those of Fermi-liquid metals.
109 - G. Cao , V. Durairaj , S. Chikara 2007
We report transport and thermodynamic properties of single-crystal SrIrO3 as a function of temperature T and applied magnetic field H. We find that SrIrO3 is a non-Fermi-liquid metal near a ferromagnetic instability, as characterized by the following properties: (1) small ordered moment but no evidence for long-range order down to 1.7 K; (2) strongly enhanced magnetic susceptibility that diverges as T or T1/2 at low temperatures, depending on the applied field; (3) heat capacity C(T,H) ~ -Tlog T that is readily amplified by low applied fields; (4) a strikingly large Wilson ratio at T< 4K; and (5) a T3/2-dependence of electrical resistivity over the range 1.7 < T < 120 K. A phase diagram based on the data implies SrIrO3 is a rare example of a stoichiometric oxide compound that exhibits non-Fermi-liquid behavior near a quantum critical point (T = 0 and H = 0.23 T).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا