ﻻ يوجد ملخص باللغة العربية
The asymptotic giant branch (AGB) star R Sculptoris (R Scl) is one of the most extensively studied stars on the AGB. R Scl is a carbon star with a massive circumstellar shell ($M_{shell}sim 7.3times10^{-3}~M_{odot}$) which is thought to have been produced during a thermal pulse event $sim2200$ years ago. To study the thermal dust emission associated with its circumstellar material, observations were taken with the Faint Object InfraRed CAMera for the SOFIA Telescope (FORCAST) at 19.7, 25.2, 31.5, 34.8, and 37.1 $mu$m. Maps of the infrared emission at these wavelengths were used to study the morphology and temperature structure of the spatially extended dust emission. Using the radiative transfer code DUSTY and fitting the spatial profile of the emission, we find that a geometrically thin dust shell cannot reproduce the observed spatially resolved emission. Instead, a second dust component in addition to the shell is needed to reproduce the observed emission. This component, which lies interior to the dust shell, traces the circumstellar envelope of R Scl. It is best fit by a density profile with $n propto r^{alpha}$ where $alpha=0.75^{+0.45}_{-0.25}$ and dust mass of $M_d=9.0^{+2.3}_{-4.1}times10^{-6}~M_{odot}$. The strong departure from an $r^{-2}$ law indicates that the mass-loss rate of R Scl has not been constant. This result is consistent with a slow decline in the post-pulse mass-loss which has been inferred from observations of the molecular gas.
For the carbon AGB star R Sculptoris, the uncertain distance significantly affects the interpretation of observations regarding the evolution of the stellar mass loss during and after the most recent thermal pulse. We aim to provide a new, independen
The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this dataset wit
We present near-infrared interferometry of the carbon-rich asymptotic giant branch (AGB) star R Sculptoris. The visibility data indicate a broadly circular resolved stellar disk with a complex substructure. The observed AMBER squared visibility val
Stars on the asymptotic giant branch (AGB) lose substantial amounts of matter, to the extent that they are important for the chemical evolution of, and dust production in, the universe. The mass loss is believed to increase gradually with age on the
We present a catalog of 840 X-ray sources and first results from a 100 ks Chandra X-ray Observatory imaging study of the filamentary infrared dark cloud G014.225$-$00.506, which forms the central regions of a larger cloud complex known as the M17 sou