ترغب بنشر مسار تعليمي؟ اضغط هنا

Cubic Lagrange elements satisfying exact incompressibility

77   0   0.0 ( 0 )
 نشر من قبل Johnny Guzman
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that an analog of the Scott-Vogelius finite elements are inf-sup stable on certain nondegenerate meshes for piecewise cubic velocity fields. We also characterize the divergence of the velocity space on such meshes. In addition, we show how such a characterization relates to the dimension of C^1 piecewise quartics on the same mesh.



قيم البحث

اقرأ أيضاً

317 - Luca Asselle 2015
Let $(M,g)$ be a closed Riemannian manifold, $L: TMrightarrow mathbb R$ be a Tonelli Lagrangian. Given two closed submanifolds $Q_0$ and $Q_1$ of $M$ and a real number $k$, we study the existence of Euler-Lagrange orbits with energy $k$ connecting $Q _0$ to $Q_1$ and satisfying the conormal boundary conditions. We introduce the Ma~ne critical value which is relevant for this problem and discuss existence results for supercritical and subcritical energies. We also provide counterexamples showing that all the results are sharp.
This paper describes the analysis of Lagrange interpolation errors on tetrahedrons. In many textbooks, the error analysis of Lagrange interpolation is conducted under geometric assumptions such as shape regularity or the (generalized) maximum angle c ondition. In this paper, we present a new estimation in which the error is bounded in terms of the diameter and projected circumradius of the tetrahedron. Because we do not impose any geometric restrictions on the tetrahedron itself, our error estimation may be applied to any tetrahedralizations of domains including very thin tetrahedrons.
99 - Luca Asselle 2015
Let $(M,g)$ be a closed Riemannian manifold and $L:TMrightarrow mathbb R$ be a Tonelli Lagrangian. In this thesis we study the existence of orbits of the Euler-Lagrange flow associated with $L$ satisfying suitable boundary conditions. We first look f or orbits connecting two given closed submanifolds of $M$ satisfying the conormal boundary conditions: We introduce the Ma~ne critical value that is relevant for the problem and prove existence results for supercritical and subcritical energies; we also complement these with counterexamples, thus showing the sharpness of our results. We then move to the problem of finding periodic orbits: We provide an existence result of periodic orbits for non-aspherical manifolds generalizing the Lusternik-Fet Theorem, and a multiplicity result in case the configuration space is the 2-torus.
We present the error analysis of Lagrange interpolation on triangles. A new textit{a priori} error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are i mposed in order to get this type of error estimates.
We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuv{s}ka and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal app roximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed triangles and tetrahedrons are proved by a method that is a straightforward extension of the original given by Babuv{s}ka-Aziz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا