ﻻ يوجد ملخص باللغة العربية
Let $(M,g)$ be a closed Riemannian manifold, $L: TMrightarrow mathbb R$ be a Tonelli Lagrangian. Given two closed submanifolds $Q_0$ and $Q_1$ of $M$ and a real number $k$, we study the existence of Euler-Lagrange orbits with energy $k$ connecting $Q_0$ to $Q_1$ and satisfying the conormal boundary conditions. We introduce the Ma~ne critical value which is relevant for this problem and discuss existence results for supercritical and subcritical energies. We also provide counterexamples showing that all the results are sharp.
Let $(M,g)$ be a closed Riemannian manifold and $L:TMrightarrow mathbb R$ be a Tonelli Lagrangian. In this thesis we study the existence of orbits of the Euler-Lagrange flow associated with $L$ satisfying suitable boundary conditions. We first look f
Let $(M,g)$ be a closed Riemannian manifold and $sigma$ be a closed 2-form on $M$ representing an integer cohomology class. In this paper, using symplectic reduction, we show how the problem of existence of closed magnetic geodesics for the magnetic
In this paper, we show the existence of non contractible periodic orbits in Hamiltonian systems defined on $T^*T^n$ separating two Lagrangian tori under certain cone assumption. Our result answers a question of Polterovich in cite{P} in a sharp way.
We consider elliptic equations and systems in divergence form with the conormal or the Robin boundary conditions, with small BMO (bounded mean oscillation) or variably partially small BMO coefficients. We propose a new class of domains which are loca
We prove that an analog of the Scott-Vogelius finite elements are inf-sup stable on certain nondegenerate meshes for piecewise cubic velocity fields. We also characterize the divergence of the velocity space on such meshes. In addition, we show how s