ﻻ يوجد ملخص باللغة العربية
We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range $10div 140$ GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwells equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarizations rotation can be explained by an optical splitting parameter appearing naturally in Maxwells equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.
Photonic topological states have revolutionized our understanding on the propagation and scattering of light. Recent discovery of higher-order photonic topological insulators opens an emergent horizon for zero-dimensional topological corner states. H
Efficient numeric algorithm is the key for accurate evaluation of density of states (DOS) in band theory. Gilat-Raubenheimer (GR) method proposed in 1966 is an efficient linear extrapolation method which was limited in specific lattices. Here, using
We obtain a general result for the Lamb shift of excited states of multi-level atoms in inhomogeneous electromagnetic structures and apply it to study atomic hydrogen in inverse-opal photonic crystals. We find that the photonic-crystal environment ca
The periodic changes in physical and chemical properties of the chemical elements is caused by the periodic change of the ionization energies. The ionization energy of each element is constant and this manifests itself in the periodic table. However,
Topological manipulation of waves is at the heart of the cutting-edge metamaterial researches. Quadrupole topological insulators were recently discovered in two-dimensional (2D) flux-threading lattices which exhibit higher-order topological wave trap