ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Lamb Shift in Photonic Crystals

101   0   0.0 ( 0 )
 نشر من قبل Xue-Hua Wang
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain a general result for the Lamb shift of excited states of multi-level atoms in inhomogeneous electromagnetic structures and apply it to study atomic hydrogen in inverse-opal photonic crystals. We find that the photonic-crystal environment can lead to very large values of the Lamb shift, as compared to the case of vacuum. We also predict that the position-dependent Lamb shift should extend from a single level to a mini-band for an assemble of atoms with random distribution in space, similar to the velocity-dependent Doppler effect in atomic/molecular gases.



قيم البحث

اقرأ أيضاً

Hybrid quantum systems consisting of an ensemble of two--level systems interacting with a single--mode electromagnetic field are important for the development of quantum information processors and other quantum devices. These systems are characterize d by the set of energy level hybridizations, split by collective Lamb shifts, that occur when the ensemble and field mode interact coherently with high cooperativity. Computing the full set of Lamb shifts is generally intractable given the high dimensionality of many devices. In this work, we present a set of techniques that allow a compact description of the Lamb shift statistics across all collective angular momentum subspaces of the ensemble without using restrictive approximations on the state space. We use these techniques to both analyze the Lamb shift in all subspaces and excitation manifolds and to describe the average observed Lamb shift weighted over the degeneracies of all subspaces.
Topological manipulation of waves is at the heart of the cutting-edge metamaterial researches. Quadrupole topological insulators were recently discovered in two-dimensional (2D) flux-threading lattices which exhibit higher-order topological wave trap ping at both the edges and corners. Photonic crystals (PhCs), lying at the boundary between continuous media and discrete lattices, however, are incompatible with the present quadrupole topological theory. Here, we unveil quadrupole topological PhCs triggered by a twisting degree-of-freedom. Using a topologically trivial PhC as the motherboard, we show that twisting induces quadrupole topological PhCs without flux-threading. The twisting-induced crystalline symmetry enriches the Wannier polarizations and lead to the anomalous quadrupole topology. Versatile edge and corner phenomena are observed by controlling the twisting angles in a lateral heterostructure of 2D PhCs. Our study paves the way toward topological twist-photonics as well as the quadrupole topology in the quasi-continuum regime for phonons and polaritons.
We study the vacuum radiative corrections to energy levels of a confined electron in quantum rings. The calculations are provided for the Lamb shift of energy levels in low-momentum region of virtual photons and for both one-dimensional and two-dimen sional quantum rings. We show that contrary to the well known case of a hydrogen atom the value of the Lamb shift increases with the magnetic momentum quantum number m. We also investigate the dependence of the Lamb shift on magnetic flux piercing the ring and demonstrate a presence of magnetic-flux-dependent oscillations. For one-dimensional ring the value of the shift strongly depends on the radius of the ring. It is extremely small for semiconductor rings but can attain measurable quantities in natural organic ring-shape molecules, such as benzene, cycloalcanes and porphyrins.
Efficient numeric algorithm is the key for accurate evaluation of density of states (DOS) in band theory. Gilat-Raubenheimer (GR) method proposed in 1966 is an efficient linear extrapolation method which was limited in specific lattices. Here, using an affine transformation, we provide a new generalization of the original GR method to any Bravais lattices and show that it is superior to the tetrahedron method and the adaptive Gaussian broadening method. Finally, we apply our generalized GR (GGR) method to compute DOS of various gyroid photonic crystals of topological degeneracies.
The periodic changes in physical and chemical properties of the chemical elements is caused by the periodic change of the ionization energies. The ionization energy of each element is constant and this manifests itself in the periodic table. However, we show that the ionization energies can be dramatically changed, when atoms are placed in a photonic crystal consisting of materials with a highly tunable refractive index and voids. The tunability of these materials gives rise to the tunability of the ionization energies over a wide range. This allows one to come beyond the limitations put on by the periodic table on physical and chemical processes, and can open up new horizons in synthesizing exceptional chemical compounds that could be used in pharmaceutical and other medical-related activities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا