ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency measurements of superradiance from the strontium clock transition

107   0   0.0 ( 0 )
 نشر من قبل Matthew Norcia
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first characterization of the spectral properties of superradiant light emitted from the ultra-narrow, 1 mHz linewidth optical clock transition in an ensemble of cold $^{87}$Sr atoms. Such a light source has been proposed as a next-generation active atomic frequency reference, with the potential to enable high-precision optical frequency references to be used outside laboratory environments. By comparing the frequency of our superradiant source to that of a state-of-the-art cavity-stabilized laser and optical lattice clock, we observe a fractional Allan deviation of $6.7(1)times 10^{-16}$ at 1 second of averaging, establish absolute accuracy at the 2 Hz ($4times 10^{-15}$ fractional frequency) level, and demonstrate insensitivity to key environmental perturbations.

قيم البحث

اقرأ أيضاً

We demonstrated transferring the stability of one highly stable clock laser operating at 729 nm to another less stable laser operating at 698 nm. The two different wavelengths were bridged using an optical frequency comb. The improved stability of th e clock laser at 698 nm enabled us to evaluate the systematic frequency shifts of the Sr optical lattice clock with shorter averaging time. We determined the absolute frequency of the clock transition 1S0 - 3P0 in 87Sr to be 429 228 004 229 873.9 (1.4) Hz referenced to the SI second on the geoid via International Atomic Time (TAI).
The ESA mission Space Optical Clock project aims at operating an optical lattice clock on the ISS in approximately 2023. The scientific goals of the mission are to perform tests of fundamental physics, to enable space-assisted relativistic geodesy an d to intercompare optical clocks on the ground using microwave and optical links. The performance goal of the space clock is less than $1 times 10^{-17}$ uncertainty and $1 times 10^{-15} {tau}^{-1/2}$ instability. Within an EU-FP7-funded project, a strontium optical lattice clock demonstrator has been developed. Goal performances are instability below $1 times 10^{-15} {tau}^{-1/2}$ and fractional inaccuracy $5 times 10^{-17}$. For the design of the clock, techniques and approaches suitable for later space application are used, such as modular design, diode lasers, low power consumption subunits, and compact dimensions. The Sr clock apparatus is fully operational, and the clock transition in $^{88}$Sr was observed with linewidth as small as 9 Hz.
82 - N. Poli , M. Schioppo , S. Vogt 2014
We report on a transportable optical clock, based on laser-cooled strontium atoms trapped in an optical lattice. The experimental apparatus is composed of a compact source of ultra-cold strontium atoms including a compact cooling laser set-up and a t ransportable ultra-stable laser for interrogating the optical clock transition. The whole setup (excluding electronics) fits within a volume of less than 2 m$^3$. The high degree of operation reliability of both systems allowed the spectroscopy of the clock transition to be performed with 10 Hz resolution. We estimate an uncertainty of the clock of $7times10^{-15}$.
The absolute frequency of the $^{87}{rm Sr}$ lattice clock transition was evaluated with an uncertainty of $1.1times 10^{-15}$ using a frequency link to the international atomic time (TAI). The frequency uncertainty of a hydrogen maser used as a tran sfer oscillator was reduced by homogeneously distributed intermittent measurement over a five-day grid of TAI. Three sets of four or five days measurements as well as systematic uncertainty of the clock at $8.6times 10^{-17}$ have resulted in an absolute frequency of $^{87}{rm Sr} {}^1S_0 - {}^3P_0$ clock transition to be 429 228 004 229 872.85 (47) Hz.
We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition 2S1/2(F=0) -> F7/2(F=3) in a single trapped 171Yb+ ion. The extraordinary features of this transition result from the lon g natural lifetime and from the 4f136s2 configuration of the upper state. The electric quadrupole moment of the 2F7/2 state is measured as -0.041(5) e(a0)^2, where e is the elementary charge and a0 the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe light induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1x10^(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا