ﻻ يوجد ملخص باللغة العربية
Most of the correlation filter based tracking algorithms can achieve good performance and maintain fast computational speed. However, in some complicated tracking scenes, there is a fatal defect that causes the object to be located inaccurately. In order to address this problem, we propose a particle filter redetection based tracking approach for accurate object localization. During the tracking process, the kernelized correlation filter (KCF) based tracker locates the object by relying on the maximum response value of the response map; when the response map becomes ambiguous, the KCF tracking result becomes unreliable. Our method can provide more candidates by particle resampling to detect the object accordingly. Additionally, we give a new object scale evaluation mechanism, which merely considers the differences between the maximum response values in consecutive frames. Extensive experiments on OTB2013 and OTB2015 datasets demonstrate that the proposed tracker performs favorably in relation to the state-of-the-art methods.
Discriminant Correlation Filters (DCF) based methods now become a kind of dominant approach to online object tracking. The features used in these methods, however, are either based on hand-crafted features like HoGs, or convolutional features trained
With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.
Traditional framework of discriminative correlation filters (DCF) is often subject to undesired boundary effects. Several approaches to enlarge search regions have been already proposed in the past years to make up for this shortcoming. However, with
Correlation filter (CF)-based methods have demonstrated exceptional performance in visual object tracking for unmanned aerial vehicle (UAV) applications, but suffer from the undesirable boundary effect. To solve this issue, spatially regularized corr
The Correlation Filter is an algorithm that trains a linear template to discriminate between images and their translations. It is well suited to object tracking because its formulation in the Fourier domain provides a fast solution, enabling the dete