ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn$_{1-x}$In$_x$Te for x $geq$ 0.10

143   0   0.0 ( 0 )
 نشر من قبل Matthew Smylie
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature dependence of the London penetration depth $Deltalambda(T)$ in the superconducting doped topological crystalline insulator Sn$_{1-x}$In$_x$Te was measured down to 450 mK for two different doping levels, x $approx$ 0.45 (optimally doped) and x $approx$ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance $T_c$, indicating that ferroelectric interactions do not compete with superconductivity.

قيم البحث

اقرأ أيضاً

148 - A. Sapkota , Y. Li , B. L. Winn 2020
We present a neutron scattering study of phonons in single crystals of (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te with $x=0$ (metallic, but nonsuperconducting) and $x=0.2$ (nonmetallic normal state, but superconducting). We map the phonon dispersions (mo re completely for $x=0$) and find general consistency with theoretical calculations, except for the transverse and longitudinal optical (TO and LO) modes at the Brillouin zone center. At low temperature, both modes are strongly damped but sit at a finite energy ($sim4$ meV in both samples), shifting to higher energy at room temperature. These modes are soft due to a proximate structural instability driven by the sensitivity of Pb-Te and Sn-Te $p$-orbital hybridization to off-center displacements of the metal atoms. The impact of the soft optical modes on the low-energy acoustic modes is inferred from the low thermal conductivity, especially at low temperature. Given that the strongest electron-phonon coupling is predicted for the LO mode, which should be similar for both studied compositions, it is intriguing that only the In-doped crystal is superconducting. In addition, we observe elastic diffuse (Huang) scattering that is qualitatively explained by the difference in Pb-Te and Sn-Te bond lengths within the lattice of randomly distributed Pb and Sn sites. We also confirm the presence of anomalous diffuse low-energy atomic vibrations that we speculatively attribute to local fluctuations of individual Pb atoms between off-center sites.
High-pressure synthesis techniques have allowed for the growth of Sn$_{1-x}$In$_x$Te samples beyond the ambient In-saturation limit of $x$ = 0.5 (T$_c sim$ 4.5 K). In this study, we present measurements of the temperature dependence of the London pen etration depth $Deltalambda(T)$ in this superconducting doped topological insulator for $x$ = 0.7, where T$_{c,onset}approx 5$ K. The results indicate fully gapped BCS-like behavior, ruling out odd-parity $A_{2u}$ pairing; however, odd-parity $A_{1u}$ pairing is still possible. Critical field values measured below 1 K and other superconducting parameters are also presented.
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide superconductors where neutron studies played a key role. These topics include the phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$, where the doping-dependence of structural transitions can be understood from a mapping to the anisotropic random field Ising model. We then discuss orbital-selective Mott physics in the Fe chalcogenide series, where temperature-dependent magnetism in the parent material provided one of the earliest cases for orbital-selective correlation effects in a Hunds metal. Finally, we elaborate on the character of local magnetic correlations revealed by neutron scattering, its dependence on temperature and composition, and the connections to nematicity and superconductivity.
We report a systematic study on the growth conditions of Sn$_{1-x}$In$_x$Te thin films by molecular beam epitaxy for maximization of superconducting transition temperature $T_mathrm{c}$. Careful tuning of the flux ratios of Sn, In, and Te enables us to find an optimum condition for substituting rich In content ($x$ = 0.66) into Sn site in a single phase of Sn$_{1-x}$In$_x$Te beyond the bulk solubility limit at ambient pressure ($x$ = 0.5). $T_mathrm{c}$ shows a dome-shaped dependence on In content $x$ with the highest $T_mathrm{c}$ = 4.20 K at $x$ = 0.55, being consistent to that reported for bulk crystals. The well-regulated Sn$_{1-x}$In$_x$Te films can be a useful platform to study possible topological superconductivity by integrating them into the state-of-the-art junctions and/or proximity-coupled devices.
88 - S.Kundu , V.Tripathi 2018
Surface superconductivity has recently been observed on the (001) surface of the topological crystalline insulator Pb$_{1-x}$Sn$_{x}$Te using point-contact spectroscopy, and theoretically proposed to be of the chiral $p-$wave type. In this paper, we closely examine the conditions for realizing a robust chiral $p-$wave order in this system, rather than conventional $s$-wave superconductivity. Further, within the $p$-wave superconducting phase, we identify parameter regimes where impurity bound (Shiba) states depend crucially on the existence of the chiral $p-$wave order, and distinguish them from other regimes where the chiral $p-$wave order does exist but the impurity-induced subgap bound states cannot be used as evidence for it. Such a distinction can provide an easily realizable experimental test for chiral $p-$wave order in this system. Notably, we have obtained exact analytical expressions for the bound state wavefunctions in point defects, in the chiral $p-$wave superconducting state, and find that instead of the usual $exponential$ decay profile that characterizes bound states, these states decay as a $power-law$ at large distances from the defect. As a possible application of our findings, we also show that the zero-energy Shiba states in point defects possess an internal SU(2) rotational symmetry which enables them to be useful as quantum qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا