ترغب بنشر مسار تعليمي؟ اضغط هنا

Observers for a non-Lipschitz triangular form

99   0   0.0 ( 0 )
 نشر من قبل Francois Chaplais
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Pauline Bernard




اسأل ChatGPT حول البحث

We address the problem of designing an observer for triangular non locally Lipschitz dynamical systems. We show the convergence with an arbitrary small error of the classical high gain observer in presence of nonlinearities verifying some H{o}lder-like condition. Also, for the case when this H{o}lder condition is not verified, we propose a novel cascaded high gain observer. Under slightly more restrictive assumptions, we prove the convergence of a homogeneous observer and of its cascaded version with the help of an explicit Lyapunov function.

قيم البحث

اقرأ أيضاً

100 - Pauline Bernard 2017
We study controlled systems which are uniformly observable and differentially observable with an order larger than the system state dimension. We establish that they may be transformed into a (partial) triangular canonical form but with possibly non locally Lipschitz functions. We characterize the points where this Lipschitzness may be lost and investigate the link with uniform infinitesimal observability.
The present work establishes necessary and sufficient conditions for a nonlinear system with two inputs to be described by a specific triangular form. Except for some regularity conditions, such triangular form is flat. This may lead to the discovery of new flat systems. The proof relies on well-known results for driftless systems with two controls (the chained form) and on geometric tools from exterior differential systems. The paper also illustrates the application of its results on an academic example and on a reduced order model of an induction motor.
The (global) Lipschitz smoothness condition is crucial in establishing the convergence theory for most optimization methods. Unfortunately, most machine learning and signal processing problems are not Lipschitz smooth. This motivates us to generalize the concept of Lipschitz smoothness condition to the relative smoothness condition, which is satisfied by any finite-order polynomial objective function. Further, this work develops new Bregman-divergence based algorithms that are guaranteed to converge to a second-order stationary point for any relatively smooth problem. In addition, the proposed optimization methods cover both the proximal alternating minimization and the proximal alternating linearized minimization when we specialize the Bregman divergence to the Euclidian distance. Therefore, this work not only develops guaranteed optimization methods for non-Lipschitz smooth problems but also solves an open problem of showing the second-order convergence guarantees for these alternating minimization methods.
The design of navigation observers able to simultaneously estimate the position, linear velocity and orientation of a vehicle in a three-dimensional space is crucial in many robotics and aerospace applications. This problem was mainly dealt with usin g the extended Kalman filter and its variants which proved to be instrumental in many practical applications. Although practically efficient, the lack of strong stability guarantees of these algorithms motivated the emergence of a new class of geometric navigation observers relying on Riemannian geometry tools, leading to provable strong stability properties. The objective of this brief tutorial is to provide an overview of the existing estimation schemes, as well as some recently developed geometric nonlinear observers, for autonomous navigation systems relying on inertial measurement unit (IMU) and landmark measurements.
We consider a multi-dimensional model of a compressible fluid in a bounded domain. We want to estimate the density and velocity of the fluid, based on the observations for only velocity. We build an observer exploiting the symmetries of the fluid dyn amics laws. Our main result is that for the linearised system with full observations of the velocity field, we can find an observer which converges to the true state of the system at any desired convergence rate for finitely many but arbitrarily large number of Fourier modes. Our one-dimensional numerical results corroborate the results for the linearised, fully observed system, and also show similar convergence for the full nonlinear system and also for the case when the velocity field is observed only over a subdomain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا