ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum micro-nano devices fabricated in diamond by femtosecond laser and ion irradiation

119   0   0.0 ( 0 )
 نشر من قبل Vibhav Bharadwaj
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diamond has attracted great interest as a quantum technology platform thanks to its optically active nitrogen vacancy center (NV). The NVs ground state spin can be read out optically exhibiting long spin coherence times of about 1 ms even at ambient temperatures. In addition, the energy levels of the NV are sensitive to external fields. These properties make NVs attractive as a scalable platform for efficient nanoscale resolution sensing based on electron spins and for quantum information systems. Diamond photonics enhances optical interaction with NVs, beneficial for both quantum sensing and information. Diamond is also compelling for microfluidic applications due to its outstanding biocompatibility, with sensing functionality provided by NVs. However, it remains a significant challenge to fabricate photonics, NVs and microfluidics in diamond. In this Report, an overview is provided of ion irradiation and femtosecond laser writing, two promising fabrication methods for diamond based quantum technological devices. The unique capabilities of both techniques are described, and the most important fabrication results of color center, optical waveguide and microfluidics in diamond are reported, with an emphasis on integrated devices aiming towards high performance quantum sensors and quantum information systems of tomorrow

قيم البحث

اقرأ أيضاً

This paper presents experimental data and analysis of the structural damage caused by swift-heavy ion irradiation of single-crystal diamond. The patterned buried structural damage is shown to generate, via swelling, a mirror-pattern on the sample sur face, which remains largely damage-free. While extensive results are available for light ion implantations, this effect is reported here for the first time in the heavy ion regime, where a completely different range of input parameters (in terms of ion species, energy, stopping power, etc.) is available for customized irradiation. The chosen ion species are Au and Br, in the energy range 10-40 MeV. The observed patterns, as characterized by profilometry and atomic force microscopy, are reported in a series of model experiments, which show swelling patterns ranging from a few nm to above 200 nm. Moreover, a systematic phenomenological modelling is presented, in which surface swelling measurements are correlated to buried crystal damage. A comparison is made with data for light ion implantations, showing good compatibility with the proposed models. The modelling presented in this work can be useful for the design and realization of micropatterned surfaces in single crystal diamond, allowing to generate highly customized structures by combining appropriately chosen irradiation parameters and masks.
We demonstrate the first buried optical waveguides in diamond using focused femtosecond laser pulses. The properties of nitrogen vacancy centers are preserved in the waveguides, making them promising for diamond-based magnetometers or quantum information systems.
Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as providing a technique for their optimization.
131 - O. Tokel , A. Turnali , G. Makey 2014
Silicon is an excellent material for microelectronics and integrated photonics with untapped potential for mid-IR optics. Despite broad recognition of the importance of the third dimension, current lithography methods do not allow fabrication of phot onic devices and functional microelements directly inside silicon chips. Even relatively simple curved geometries cannot be realized with techniques like reactive ion etching. Embedded optical elements, like in glass, electronic devices and better electronic-photonic integration are lacking. Here, we demonstrate laser-based fabrication of complex 3D structures deep inside silicon using 1 micrometer-sized dots and rod-like structures of adjustable length as basic building blocks. The laser-modified Si has a different optical index than unmodified parts, which enables numerous photonic devices. Optionally, these parts are chemically etched to produce desired 3D shapes. We exemplify a plethora of subsurface, i.e., in-chip microstructures for microfluidic cooling of chips, vias, MEMS, photovoltaic applications and photonic devices that match or surpass the corresponding state-of-the-art device performances.
Diamond is a material of choice in the pursuit of integrated quantum photonic technologies. So far, the majority of photonic devices fabricated from diamond, are made from (100)-oriented crystals. In this work, we demonstrate a methodology for the fa brication of optically-active membranes from (111)-oriented diamond. We use a liftoff technique to generate membranes, followed by chemical vapour deposition of diamond in the presence of silicon to generate homogenous silicon vacancy colour centers with emission properties that are superior to those in (100)-oriented diamond. We further use the diamond membranes to fabricate high quality microring resonators with quality factors exceeding ~ 3000. Supported by finite difference time domain calculations, we discuss the advantages of (111) oriented structures as building blocks for quantum nanophotonic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا