ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet

63   0   0.0 ( 0 )
 نشر من قبل Yuntao Bai
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The search for a theory of the S-Matrix has revealed surprising geometric structures underlying amplitudes ranging from the worldsheet to the amplituhedron, but these are all geometries in auxiliary spaces as opposed to kinematic space where amplitudes live. In this paper, we propose a novel geometric understanding of amplitudes for a large class of theories. The key is to think of amplitudes as differential forms directly on kinematic space. We explore this picture for a wide range of massless theories in general spacetime dimensions. For the bi-adjoint cubic scalar, we establish a direct connection between its scattering form and a classic polytope--the associahedron--known to mathematicians since the 1960s. We find an associahedron living naturally in kinematic space, and the tree amplitude is simply the canonical form associated with this positive geometry. Basic physical properties such as locality, unitarity and novel soft limits are fully determined by the geometry. Furthermore, the moduli space for the open string worldsheet has also long been recognized as an associahedron. We show that the scattering equations act as a diffeomorphism between this old worldsheet associahedron and the new kinematic associahedron, providing a geometric interpretation and novel derivation of the bi-adjoint CHY formula. We also find scattering forms on kinematic space for Yang-Mills and the Non-linear Sigma Model, which are dual to the color-dressed amplitudes despite having no explicit color factors. This is possible due to a remarkable fact--Color is Kinematics--whereby kinematic wedge products in the scattering forms satisfy the same Jacobi relations as color factors. Finally, our scattering forms are well-defined on the projectivized kinematic space, a property that provides a geometric origin for color-kinematics duality.

قيم البحث

اقرأ أيضاً

Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to a s positive geometries. The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of positive geometries and canonical forms as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes.
We initiate the systematic study of emph{local positive spaces} which arise in the context of the Amplituhedron construction for scattering amplitudes in planar maximally supersymmetric Yang-Mills theory. We show that all local positive spaces releva nt for one-loop MHV amplitudes are characterized by certain sign-flip conditions and are associated with surprisingly simple logarithmic forms. In the maximal sign-flip case they are finite one-loop octagons. Particular combinations of sign-flip spaces can be glued into new local positive geometries. These correspond to local pentagon integrands that appear in the local expansion of the MHV one-loop amplitude. We show that, geometrically, these pentagons do emph{not} triangulate the original Amplituhedron space but rather its twin Amplituhedron-Prime. This new geometry has the same boundary structure as the Amplituhedron (and therefore the same logarithmic form) but differs in the bulk as a geometric space. On certain two-dimensional boundaries, where the Amplituhedron geometry reduces to a polygon, we check that both spaces map to the same dual polygon. Interestingly, we find that the pentagons internally triangulate that dual space. This gives a direct evidence that the chiral pentagons are natural building blocks for a yet-to-be discovered dual Amplituhedron.
201 - Kirill Krasnov 2018
We show that all fermions of one generation of the Standard Model (SM) can be elegantly described by a single fixed parity (say even) inhomogeneous real-valued differential form in seven dimensions. In this formalism the full kinetic term of the SM f ermionic Lagrangian is reproduced as the appropriate dimensional reduction of (Psi, D Psi) where Psi is a general even degree differential form in R^7, the inner product is as described in the main text, and D is essentially an appropriately interpreted exterior derivative operator. The new formalism is based on geometric constructions originating in the subjects of generalised geometry and double field theory.
68 - Carlos R. Mafra 2021
Inspired by the definition of color-dressed amplitudes in string theory, we define analogous color-dressed permutations replacing the color-ordered string amplitudes by their corresponding permutations. Decomposing the color traces into symmetrized t races and structure constants, the color-dressed permutations define BRST-invariant permutations, which we show are elements of the inverse Solomon descent algebra. Comparing both definitions suggests a duality between permutations in the inverse descent algebra and kinematics from the higher $alpha$ sector of string disk amplitudes. We analyze the symmetries of the $alpha$ disk corrections and obtain a new decomposition for them, leading to their dimensions given by sums of Stirling cycle numbers. The descent algebra also leads to the interpretation that the ${alpha}^2zeta_2$ correction is orthogonal to the field-theory amplitudes as well as their respective tails of BCJ-preserving interactions. In addition, we show how the superfield expansion of BRST invariants of the pure spinor formalism corresponding to ${alpha}^2$ corrections are encoded in the descent algebra.
In this paper we provide a first attempt towards a toric geometric interpretation of scattering amplitudes. In recent investigations it has indeed been proposed that the all-loop integrand of planar N=4 SYM can be represented in terms of well defined finite objects called on-shell diagrams drawn on disks. Furthermore it has been shown that the physical information of on-shell diagrams is encoded in the geometry of auxiliary algebraic varieties called the totally non negative Grassmannians. In this new formulation the infinite dimensional symmetry of the theory is manifest and many results, that are quite tricky to obtain in terms of the standard Lagrangian formulation of the theory, are instead manifest. In this paper, elaborating on previous results, we provide another picture of the scattering amplitudes in terms of toric geometry. In particular we describe in detail the toric varieties associated to an on-shell diagram, how the singularities of the amplitudes are encoded in some subspaces of the toric variety, and how this picture maps onto the Grassmannian description. Eventually we discuss the action of cluster transformations on the toric varieties. The hope is to provide an alternative description of the scattering amplitudes that could contribute in the developing of this very interesting field of research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا