ﻻ يوجد ملخص باللغة العربية
We show that all fermions of one generation of the Standard Model (SM) can be elegantly described by a single fixed parity (say even) inhomogeneous real-valued differential form in seven dimensions. In this formalism the full kinetic term of the SM fermionic Lagrangian is reproduced as the appropriate dimensional reduction of (Psi, D Psi) where Psi is a general even degree differential form in R^7, the inner product is as described in the main text, and D is essentially an appropriately interpreted exterior derivative operator. The new formalism is based on geometric constructions originating in the subjects of generalised geometry and double field theory.
A class of special holonomy spaces arise as nilmanifolds fibred over a line interval and are dual to intersecting brane solutions of string theory. Further dualities relate these to T-folds, exotic branes, essentially doubled spaces and spaces with R
We study some consequences of noncommutativity to homogeneous cosmologies by introducing a deformation of the commutation relation between the minisuperspace variables. The investigation is carried out for the Kantowski-Sachs model by means of a comp
We have performed the first numerical study of minimally doubled fermions of the Karsten-Wilczek class in the quenched approximation. This requires fixing the counterterms, which arise due to hypercubic symmetry breaking induced by the Karsten-Wilcze
Bipartite Riemann-Finsler geometries with complementary Finsler structures are constructed. Calculable examples are presented based on a bilinear-form coefficient for explicit Lorentz violation.
In this note we present preliminary study on the relation between the quantum entanglement of boundary states and the quantum geometry in the bulk in the framework of spin networks. We conjecture that the emergence of space with non-zero volume refle