ﻻ يوجد ملخص باللغة العربية
A superconducting loop stores persistent current without any ohmic loss, making it an ideal platform for energy efficient memories. Conventional superconducting memories use an architecture based on Josephson junctions (JJs) and have demonstrated access times less than 10 ps and power dissipation as low as $10^{-19}$ J. However, their scalability has been slow to develop due to the challenges in reducing the dimensions of JJs and minimizing the area of the superconducting loops. In addition to the memory itself, complex readout circuits require additional JJs and inductors for coupling signals, increasing the overall area. Here, we have demonstrated a superconducting memory based solely on lithographic nanowires. The small dimensions of the nanowire ensure that the device can be fabricated in a dense area in multiple layers, while the high kinetic inductance makes the loop essentially independent of geometric inductance, allowing it to be scaled down without sacrificing performance. The memory is operated by a group of nanowire cryotrons patterned alongside the storage loop, enabling us to reduce the entire memory cell to 3 {mu}m $times $ 7 {mu}m in our proof-of-concept device. In this work we present the operation principles of a superconducting nanowire memory (nMem) and characterize its bit error rate, speed, and power dissipation.
As the limits of traditional von Neumann computing come into view, the brains ability to communicate vast quantities of information using low-power spikes has become an increasing source of inspiration for alternative architectures. Key to the succes
Superconducting nanowire single-photon detectors (SNSPDs) are the highest performing photon-counting technology in the near-infrared (NIR). Due to delay-line effects, large area SNSPDs typically trade-off timing resolution and detection efficiency. H
To analyze the switching dynamics and output performance of a superconducting nanowire single photon detector (SNSPD), the nanowire is usually modelled as an inductor in series with a time-varying resistor induced by absorption of a photon. Our recen
Superconducting nanowire single photon detectors (SNSPDs) have advanced various frontier scientific and technological fields such as quantum key distribution and deep space communications. However, limited by available cooling technology, all past ex
Superconducting nanowire single photon detectors (SNSPDs) offer high-quantum-efficiency and low-dark-count-rate single photon detection. In a growing number of cases, large magnetic fields are being incorporated into quantum microscopes, nanophotonic