ﻻ يوجد ملخص باللغة العربية
Superconducting nanowire single photon detectors (SNSPDs) have advanced various frontier scientific and technological fields such as quantum key distribution and deep space communications. However, limited by available cooling technology, all past experimental demonstrations have had ground-based applications. In this work we demonstrate a SNSPD system using a hybrid cryocooler compatible with space applications. With a minimum operational temperature of 2.8 K, this SNSPD system presents a maximum system detection efficiency of over 50% and a timing jitter of 48 ps, which paves the way for various space applications.
The superconducting nanowire single-photon detector (SNSPD) is a quantum-limit superconducting optical detector based on the Cooper-pair breaking effect by a single photon, which exhibits a higher detection efficiency, lower dark count rate, higher c
Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photo
Superconducting nanowire single-photon detectors have emerged as a promising technology for quantum metrology from the mid-infrared to ultra-violet frequencies. Despite the recent experimental successes, a predictive model to describe the detection e
To analyze the switching dynamics and output performance of a superconducting nanowire single photon detector (SNSPD), the nanowire is usually modelled as an inductor in series with a time-varying resistor induced by absorption of a photon. Our recen
An abnormal increase in the SDE was observed for superconducting nanowire single-photon detectors (SNSPDs) when the bias current (Ib) was close to the switching current (Isw). By introducing the time-correlated single-photon counting technique, we in