ترغب بنشر مسار تعليمي؟ اضغط هنا

Nematic superconducting state in iron pnictide superconductors

111   0   0.0 ( 0 )
 نشر من قبل Jun Li
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measuring the angular dependence of the in-plane and out-of-plane magnetoresistivity of Ba0.5K0.5Fe2As2 single crystals. We find large twofold oscillations in the vicinity of the superconducting transition, when the direction of applied magnetic field is rotated within the basal plane. To avoid the influences from sample geometry or current flow direction, the sample was designed as Corbino-shape for in-plane and mesa-shape for out-of-plane measurements. Theoretical analysis shows that the nematic superconductivity arises from the weak mixture of the quasi-degenerate s-wave and d-wave components of the superconducting condensate, most probably induced by a weak anisotropy of stresses inherent to single crystals.

قيم البحث

اقرأ أيضاً

Insight into the electronic structure of the pnictide family of superconductors is obtained from quantum oscillation measurements. Here we review experimental quantum oscillation data that reveal a transformation from large quasi-two dimensional elec tron and hole cylinders in the paramagnetic overdoped members of the pnictide family to significantly smaller three-dimensional Fermi surface sections in the antiferromagnetic parent members, via a potential quantum critical point at which an effective mass enhancement is observed. Similarities with the Fermi surface evolution from the overdoped to the underdoped normal state of the cuprate superconducting family are discussed, along with the enhancement in antiferromagnetic correlations in both these classes of materials, and the potential implications for superconductivity.
The electrodynamic properties of Ba(Fe$_{0.92}$Co$_{0.08})_2$As$_{2}$ and Ba(Fe$_{0.95}$Ni$_{0.05})_As$_{2}$ single crystals have been investigated by reflectivity measurements in a wide frequency range. In the metallic state, the optical conductivit y consists of a broad incoherent background and a narrow Drude-like component which determines the transport properties; only the latter contribution strongly depends on the composition and temperature. This subsystem reveals a $T^2$ behavior in the dc resistivity and scattering rate disclosing a hidden Fermi-liquid behavior in the 122 iron-pnictide family. An extended Drude analysis yields the frequency dependence of the effective mass (with $m^*/m_bapprox 5$ in the static limit) and scattering rate that does not disclose a simple power law. The spectral weight shifts to lower energies upon cooling; a significant fraction is not recovered within the infrared range of frequencies.
We show that the zero field normal-state resistivity above Tc for various levels of electron doping - both for LaO1-xFxFeAs (La-1111) and SmO1-xFxFeAs (Sm-1111) members of the 1111-iron-pnictide superconductor family - can be scaled in a broad temper ature range from 20 to 300 K onto single curves for underdoped La-1111 (x=0.05-0.075), for optimally and overdoped La-1111 (x=0.1-0.2) and for underdoped Sm-1111 (x=0.06-0.1) compounds. The scaling was performed using the energy scale {Delta}, the resistivity {rho}_{Delta} and the residual resistivity {rho}_0 as scaling parameters as well as by applying a recently proposed model-independent scaling method (H. G. Luo, Y. H. Su, and T. Xiang, Phys. Rev. B 77, 014529 (2008)). The scaling parameters have been calculated and the compositional variation of {Delta} has been determined. The observed scaling behaviour for {rho}(T) is interpreted as an indication of a common mechanism which dominates the scattering of the charge carriers in underdoped La-1111, in optimally and overdoped La-1111 and in underdoped Sm-1111 compounds..
104 - T. Kariyado , M. Ogata 2009
Nuclear magnetic relaxation rate 1/T_1 in iron-pnictide superconductors is calculated using the gap function obtained in a microscopic calculation. Based on the obtained results, we discuss the issues such as the rapid decrease of 1/T_1 just below th e transition temperature and the difference between nodeless and nodal s-wave gap functions. We also investigate the effect of Coulomb interaction on 1/T_1 in the random phase approximation and show its importance in interpreting the experimental results.
Using a variational Monte Carlo method, we investigate the nematic state in iron-base superconductors based on a three-band Hubbard model. Our results demonstrate that the nematic state, formed by introducing an anisotropic hopping order into the pro jected wave function, can arise in the underdoped regime when a realistic off-site Coulomb interaction $V$ is considered. {color {red} We demonstrate that the off-site Coulomb interaction $V$, which is neglected so far in the analysis of iron-base superconductors, make a dominant contribution to the stabilization of nematic state. We calculate the doping dependencies of the anisotropic properties such as the unequal occupation of $d_{xz}$ and $d_{yz}$ orbitals, anisotropies of kinetic energy and spin correlations, and show that they are all suppressed upon electron doping, which are consistent with the intrinsic anisotropies observed by optical spectrum measurement and ARPES experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا