ترغب بنشر مسار تعليمي؟ اضغط هنا

Nematic state stabilized by off-site Coulomb interaction in iron-based superconductors

512   0   0.0 ( 0 )
 نشر من قبل Liang-Jian Zou
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a variational Monte Carlo method, we investigate the nematic state in iron-base superconductors based on a three-band Hubbard model. Our results demonstrate that the nematic state, formed by introducing an anisotropic hopping order into the projected wave function, can arise in the underdoped regime when a realistic off-site Coulomb interaction $V$ is considered. {color {red} We demonstrate that the off-site Coulomb interaction $V$, which is neglected so far in the analysis of iron-base superconductors, make a dominant contribution to the stabilization of nematic state. We calculate the doping dependencies of the anisotropic properties such as the unequal occupation of $d_{xz}$ and $d_{yz}$ orbitals, anisotropies of kinetic energy and spin correlations, and show that they are all suppressed upon electron doping, which are consistent with the intrinsic anisotropies observed by optical spectrum measurement and ARPES experiments.



قيم البحث

اقرأ أيضاً

Nematicity is ubiquitous in electronic phases of high-$T_c$ superconductors, particularly in the Fe-based systems. We used inelastic x-ray scattering to extract the temperature-dependent nematic correlation length $xi$ from the anomalous softening of acoustic phonon modes in FeSe, underdoped Ba(Fe$_{0.97}$Co$_{0.03}$)$_2$As$_2$ and optimally doped Ba(Fe$_{0.94}$Co$_{0.06}$)$_2$As$_2$. In all cases, we find that $xi$ is well described by a power law $(T-T_0)^{-1/2}$ extending over a wide temperature range. We attributed this mean-field behavior and the extended fluctuation regime to a sizable nemato-elastic coupling, which may be detrimental to superconductivity.
We report Raman scattering measurement of charge nematic fluctuations in the tetragonal phase of BaFe$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$ (x=0.04) single crystals. In both systems, the observed nematic fluctuations are found to exhibit diver gent Curie-Weiss like behavior with very similar characteristic temperature scales, indicating a universal tendency towards charge nematic order in 122 iron-based superconductors.
Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measu ring the angular dependence of the in-plane and out-of-plane magnetoresistivity of Ba0.5K0.5Fe2As2 single crystals. We find large twofold oscillations in the vicinity of the superconducting transition, when the direction of applied magnetic field is rotated within the basal plane. To avoid the influences from sample geometry or current flow direction, the sample was designed as Corbino-shape for in-plane and mesa-shape for out-of-plane measurements. Theoretical analysis shows that the nematic superconductivity arises from the weak mixture of the quasi-degenerate s-wave and d-wave components of the superconducting condensate, most probably induced by a weak anisotropy of stresses inherent to single crystals.
108 - C. H. Lee , K. Kihou , J. T. Park 2016
The mechanism of Cooper pair formation in iron-based superconductors remains a controversial topic. The main question is whether spin or orbital fluctuations are responsible for the pairing mechanism. To solve this problem, a crucial clue can be obta ined by examining the remarkable enhancement of magnetic neutron scattering signals appearing in a superconducting phase. The enhancement is called spin resonance for a spin fluctuation model, in which their energy is restricted below twice the superconducting gap value (2Ds), whereas larger energies are possible in other models such as an orbital fluctuation model. Here we report the doping dependence of low-energy magnetic excitation spectra in Ba1-xKxFe2As2 for 0.5<x<0.84 studied by inelastic neutron scattering. We find that the behavior of the spin resonance dramatically changes from optimum to overdoped regions. Strong resonance peaks are observed clearly below 2Ds in the optimum doping region, while they are absent in the overdoped region. Instead, there is a transfer of spectral weight from energies below 2Ds to higher energies, peaking at values of 3Ds for x = 0.84. These results suggest a reduced impact of magnetism on Cooper pair formation in the overdoped region.
Electronic nematicity is often found in unconventional superconductors, suggesting its relevance for electronic pairing. In the strongly hole-doped iron-based superconductors, the symmetry channel and strength of the nematic fluctuations, as well as the possible presence of long-range nematic order, remain controversial. Here, we address these questions using transport measurements under elastic strain. By decomposing the strain response into the appropriate symmetry channels, we demonstrate the emergence of a giant in-plane symmetric contribution, associated with the growth of both strong electronic correlations and the sensitivity of these correlations to strain. We find weakened remnants of the nematic fluctuations that are present at optimal doping, but no change in the symmetry channel of nematic fluctuations with hole doping. Furthermore, we find no evidence for a nematic-ordered state in the AFe$_2$As$_2$(A = K, Rb, Cs) superconductors. These results revise the current understanding of nematicity in hole-doped iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا