ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Large Deviation Analysis of Eigenstate Thermalization Hypothesis

252   0   0.0 ( 0 )
 نشر من قبل Eiki Iyoda
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A plausible mechanism of thermalization in isolated quantum systems is based on the strong version of the eigenstate thermalization hypothesis (ETH), which states that all the energy eigenstates in the microcanonical energy shell have thermal properties. We numerically investigate the ETH by focusing on the large deviation property, which directly evaluates the ratio of athermal energy eigenstates in the energy shell. As a consequence, we have systematically confirmed that the strong ETH is indeed true even for near-integrable systems, where we found that the finite-size scaling of the ratio of athermal eigenstates is double exponential. Our result illuminates universal behavior of quantum chaos, and suggests that large deviation analysis would serve as a powerful method to investigate thermalization in the presence of the large finite-size effect.



قيم البحث

اقرأ أيضاً

129 - Zhihao Lan , Stephen Powell 2017
We use exact diagonalization to study the eigenstate thermalization hypothesis (ETH) in the quantum dimer model on the square and triangular lattices. Due to the nonergodicity of the local plaquette-flip dynamics, the Hilbert space, which consists of highly constrained close-packed dimer configurations, splits into sectors characterized by topological invariants. We show that this has important consequences for ETH: We find that ETH is clearly satisfied only when each topological sector is treated separately, and only for moderate ratios of the potential and kinetic terms in the Hamiltonian. By contrast, when the spectrum is treated as a whole, ETH breaks down on the square lattice, and apparently also on the triangular lattice. These results demonstrate that quantum dimer models have interesting thermalization dynamics.
In a recent Letter [PhysRevLett.119.030601 (2017), arXiv:1702.08227], Shiraishi and Mori claim to provide a general method for constructing local Hamiltonians that do not exhibit eigenstate thermalization. We argue that the claim is based on a misund erstanding of the eigenstate thermalization hypothesis (ETH). More specifically, on the assumption that ETH is valid for the entire Hamiltonian matrix instead of each symmetry sector independently. We discuss what happens if one mixes symmetry sectors in the two-dimensional transverse field Ising model.
By calculating correlation functions for the Lieb-Liniger model based on the algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the eigenstate thermalization hypothesis (ETH) which is considered to be a possible mechanism of thermalization in isolated quantum systems. We find that the ETH in the weak sense holds in the thermodynamic limit even for an integrable system although it does not hold in the strong sense. Based on the result of the finite-size scaling analysis, we compare the contribution of the weak ETH to thermalization with that of yet another thermalization mechanism, the typicality, and show that the former gives only a logarithmic correction to the latter.
Using numerical exact diagonalization, we study matrix elements of a local spin operator in the eigenbasis of two different nonintegrable quantum spin chains. Our emphasis is on the question to what extent local operators can be represented as random matrices and, in particular, to what extent matrix elements can be considered as uncorrelated. As a main result, we show that the eigenvalue distribution of band submatrices at a fixed energy density is a sensitive probe of the correlations between matrix elements. We find that, on the scales where the matrix elements are in a good agreement with all standard indicators of the eigenstate thermalization hypothesis, the eigenvalue distribution still exhibits clear signatures of the original operator, implying correlations between matrix elements. Moreover, we demonstrate that at much smaller energy scales, the eigenvalue distribution approximately assumes the universal semicircle shape, indicating transition to the random-matrix behavior, and in particular that matrix elements become uncorrelated.
Many phases of matter, including superconductors, fractional quantum Hall fluids and spin liquids, are described by gauge theories with constrained Hilbert spaces. However, thermalization and the applicability of quantum statistical mechanics has pri marily been studied in unconstrained Hilbert spaces. In this article, we investigate whether constrained Hilbert spaces permit local thermalization. Specifically, we explore whether the eigenstate thermalization hypothesis (ETH) holds in a pinned Fibonacci anyon chain, which serves as a representative case study. We first establish that the constrained Hilbert space admits a notion of locality, by showing that the influence of a measurement decays exponentially in space. This suggests that the constraints are no impediment to thermalization. We then provide numerical evidence that ETH holds for the diagonal and off-diagonal matrix elements of various local observables in a generic disorder-free non-integrable model. We also find that certain non-local observables obey ETH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا