ﻻ يوجد ملخص باللغة العربية
Fossil galaxy systems are classically thought to be the end result of galaxy group/cluster evolution, as galaxies experiencing dynamical friction sink to the center of the group potential and merge into a single, giant elliptical that dominates the rest of the members in both mass and luminosity. Most fossil systems discovered lie within $z < 0.2$, which leads to the question: what were these systems progenitors? Such progenitors are expected to have imminent or ongoing major merging near the brightest group galaxy (BGG) that, when concluded, will meet the fossil criteria within the look back time. Since strong gravitational lensing preferentially selects groups merging along the line of sight, or systems with a high mass concentration like fossil systems, we searched the CASSOWARY survey of strong lensing events with the goal of determining if lensing systems have any predisposition to being fossil systems or progenitors. We find that $sim$13% of lensing groups are identified as traditional fossils while only $sim$3% of non-lensing control groups are. We also find that $sim$23% of lensing systems are traditional fossil progenitors compared to $sim$17% for the control sample. Our findings show that strong lensing systems are more likely to be fossil/pre-fossil systems than comparable non-lensing systems. Cumulative galaxy luminosity functions of the lensing and non-lensing groups also indicate a possible, fundamental difference between strong lensing and non-lensing systems galaxy populations with lensing systems housing a greater number of bright galaxies even in the outskirts of groups.
We want to study how the velocity segregation and the radial profile of the velocity dispersion depend on the prominence of the brightest cluster galaxies (BCGs). We divide a sample of 102 clusters and groups of galaxies into four bins of magnitude g
The Cheshire Cat is a relatively poor group of galaxies dominated by two luminous elliptical galaxies surrounded by at least four arcs from gravitationally lensed background galaxies that give the system a humorous appearance. Our combined optical/X-
We present a weak lensing analysis of a sample of SDSS Compact Groups (CGs). Using the measured radial density contrast profile, we derive the average masses under the assumption of spherical symmetry, obtaining a velocity dispersion for the Singular
Strong gravitational lenses provide an important tool to measure masses in the distant Universe, thus testing models for galaxy formation and dark matter; to investigate structure at the Epoch of Reionization; and to measure the Hubble constant and p
Assessing the probability that two or more gravitational waves (GWs) are lensed images of the same source requires an understanding of the image properties, including their relative phase shifts in strong lensing (SL). For non-precessing, circular bi