ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong gravitational lensing with the SKA

165   0   0.0 ( 0 )
 نشر من قبل John McKean
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong gravitational lenses provide an important tool to measure masses in the distant Universe, thus testing models for galaxy formation and dark matter; to investigate structure at the Epoch of Reionization; and to measure the Hubble constant and possibly w as a function of redshift. However, the limiting factor in all of these studies has been the currently small samples of known gravitational lenses (~10^2). The era of the SKA will transform our understanding of the Universe with gravitational lensing, particularly at radio wavelengths where the number of known gravitational lenses will increase to ~10^5. Here we discuss the technical requirements, expected outcomes and main scientific goals of a survey for strong gravitational lensing with the SKA. We find that an all-sky (3pi sr) survey carried out with the SKA1-MID array at an angular resolution of 0.25-0.5 arcsec and to a depth of 3 microJy / beam is required for studies of galaxy formation and cosmology with gravitational lensing. In addition, the capability to carryout VLBI with the SKA1 is required for tests of dark matter and studies of supermassive black holes at high redshift to be made using gravitational lensing.



قيم البحث

اقرأ أيضاً

87 - L.V.E. Koopmans 2004
The advent of new observational facilities in the last two decades has allowed the rapid discovery and high-resolution optical imaging of many strong lens systems from galaxy to cluster scales, as well as their spectroscopic follow-up. Radio telescop es have played the dominant role in the systematic detection of dozens of new arcsec-scale lens systems. For the future, we expect nothing less! The next major ground- and space-based facilities, especially the Square Kilometer Array can discover tens of thousands of new lens systems in large sky surveys. For optical imaging and spectroscopic follow-up a strong synergy with planned optical facilities is needed. Here, we discuss the field where strong gravitational lensing is expected to play the dominant role and where SKA can have a major impact: The study of the internal mass structure and evolution of galaxies and clusters to z~1. In addition, studies of more exotic phenomena are contemplated. For example, milli- and microlensing can provide a way to measure the mass-functions of stars and CDM substructure at cosmological distances. All-sky radio monitoring will also rapidly develop the field of time-domain lensing.
Recently, Rastall gravity is undergoing a significant surge in popularity. We obtain a power-law total mass-density profile for the inner region (within several effective radius) of early-type galaxies (ETGs) from the space-time structures which are described by the static spherically-symmetric solutions of Rastall gravity under the assumption of perfect fluid matter. We find that in the inner region of ETGs, the Rastall dimensionless parameter $beta=kappalambda$ determines the mass distribution. We then use 118 galaxy-galaxy strong gravitational lensing systems to constrain the Rastall dimensionless parameter $beta$. We find that the mean value of $beta$ for total 118 ETGs is $beta=0.163pm0.001$(68% CL) with a minor intrinsic scatter of $delta=0.020pm 0.001$. Our work observationally illustrates the physical meaning of the Rastall dimensionless parameter in galaxy scale. From the Newtonian approximation of Rastall gravity, we also find that an absolute isothermal mass distribution for ETGs is not allowed in the framework of Rastall gravity.
70 - Renyue Cen 2016
We perform a statistical analysis of strong gravitational lensing by quasar hosts of background galaxies, in the two competing models of dark matter halos of quasars, HOD and CS models. Utilizing the BolshoiP Simulation we demonstrate that strong gra vitational lensing provides a potentially very powerful test of models of quasar hosting halos. For quasars at $z=0.5$, the lensing probability by quasars of background galaxies in the HOD model is higher than that of the CS model by two orders of magnitude or more for lensing image separations in the range of $thetasim 1.2-12~$arcsec. To observationally test this, we show that, as an example, at the depth of the CANDELS wide field survey and with a quasar sample of $1000$ at $z=0.5$, the two models can be differentiated at $3-4sigma$ confidence level.
175 - Lucas E. Johnson 2017
Fossil galaxy systems are classically thought to be the end result of galaxy group/cluster evolution, as galaxies experiencing dynamical friction sink to the center of the group potential and merge into a single, giant elliptical that dominates the r est of the members in both mass and luminosity. Most fossil systems discovered lie within $z < 0.2$, which leads to the question: what were these systems progenitors? Such progenitors are expected to have imminent or ongoing major merging near the brightest group galaxy (BGG) that, when concluded, will meet the fossil criteria within the look back time. Since strong gravitational lensing preferentially selects groups merging along the line of sight, or systems with a high mass concentration like fossil systems, we searched the CASSOWARY survey of strong lensing events with the goal of determining if lensing systems have any predisposition to being fossil systems or progenitors. We find that $sim$13% of lensing groups are identified as traditional fossils while only $sim$3% of non-lensing control groups are. We also find that $sim$23% of lensing systems are traditional fossil progenitors compared to $sim$17% for the control sample. Our findings show that strong lensing systems are more likely to be fossil/pre-fossil systems than comparable non-lensing systems. Cumulative galaxy luminosity functions of the lensing and non-lensing groups also indicate a possible, fundamental difference between strong lensing and non-lensing systems galaxy populations with lensing systems housing a greater number of bright galaxies even in the outskirts of groups.
154 - G.H. Janssen 2014
On a time scale of years to decades, gravitational wave (GW) astronomy will become a reality. Low frequency (nanoHz) GWs are detectable through long-term timing observations of the most stable pulsars. Radio observatories worldwide are currently carr ying out observing programmes to detect GWs, with data sets being shared through the International Pulsar Timing Array project. One of the most likely sources of low frequency GWs are supermassive black hole binaries (SMBHBs), detectable as a background due to a large number of binaries, or as continuous or burst emission from individual sources. No GW signal has yet been detected, but stringent constraints are already being placed on galaxy evolution models. The SKA will bring this research to fruition. In this chapter, we describe how timing observations using SKA1 will contribute to detecting GWs, or can confirm a detection if a first signal already has been identified when SKA1 commences observations. We describe how SKA observations will identify the source(s) of a GW signal, search for anisotropies in the background, improve models of galaxy evolution, test theories of gravity, and characterise the early inspiral phase of a SMBHB system. We describe the impact of the large number of millisecond pulsars to be discovered by the SKA; and the observing cadence, observation durations, and instrumentation required to reach the necessary sensitivity. We describe the noise processes that will influence the achievable precision with the SKA. We assume a long-term timing programme using the SKA1-MID array and consider the implications of modifications to the current design. We describe the possible benefits from observations using SKA1-LOW. Finally, we describe GW detection prospects with SKA1 and SKA2, and end with a description of the expectations of GW astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا